Planning

CPS 570
Ron Parr

Some Actual Planning Applications

- Used to fulfill mission objectives in NASA’s Deep Space One (Remote Agent)
 - Particularly important for space operations due to latency
 - Also used for rovers
- Aircraft assembly schedules
- Logistics for the U.S. Navy
- Observation schedules for Hubble space telescope
- Scheduling of operations in an Australian beer factory
Scheduling

- Many “planning” problems are scheduling problems

- Scheduling can be viewed as a generalization of the planning problem to include resource constraints
 - Time & Space
 - Money & Energy

- Many principles from regular planning generalize, but some extensions (not discussed here) are used

Characterizing Planning Problems

- Start state (group of states)
- Goal – almost always a group of states
- Actions

- Objective: Plan = A sequence of actions that is **guaranteed** to achieve the goal.

- Like everything else, can view planning as search...
- **So, how is this different from generic search?**
What makes planning special?

• States typically specified by a set of relations or propositions:
 – On(solar_panels, cargo_floor)
 – arm_broken
• Goal is almost always a set
 – Typically care about a small number of things:
 • at(Ron, airport),
 • parked_in(X, car_of(Ron))
 • airport_parking_stall(X)
 – Many things are irrelevant
 • parked_in(Y, car_of(Bill))
 • adjacent(X,Y)
• Branching factor is large

Planning Algorithms

• Extremely active and rapidly changing area
• Annual competitions pit different algorithms against each other on suites of challenge problems
• Algorithms compete in different categories
 – General vs. Domain specific
 – Optimal vs. Satisficing

• No clearly superior method has emerged, though there are trends – satplan is one such trend
Planning With Logic/Theorem Proving

• Need to describe effects of actions with logic
• Ask for the existence of plans that achieve our goals
• Challenge: Talking about dynamic situations in logic

Situations

• Can’t have contradictions in our knowledge base
 – OTW, can prove anything
• Need to index our claims about the world with time in some way (otherwise changes would create contradictions)
• Add an extra argument onto every predicate indicating when things are true:
 – on(table, z, s)
 – on(x, y, s)
• result(s,a) = result of doing a in s
• (result(s,a) = result(s’,a,)) iff ((s=s’) AND (a=a’))
Finding the Plan

- Assume we have:
 - Descriptions of all actions
 - Successor-state axioms
 - Description of the initial state (situation)
- Q: How do we find the plan?
- A: Ask theorem prover if there exists a situation in which the goal is true!
- Theorem prover will return plan as a binding: result(move(X,Table,(result(move(Y,X,Z,S))

Why planning w/logic is awkward

- Adding an extra argument to every predicate has issues:
 - Complicates representation
 - Need to say what changes in every situation, as well as what doesn’t change – frame problem
- Logic is very general:
 - Theorem proving tends to be slow/inefficient
 - Generality always comes at price of efficiency
Describing Actions

• Let’s move A from B to C

• on(A,B,S) AND clear(C,S) \(\Rightarrow\)
 applicable(move(A,B,C,S))

• applicable(move(A,B,C,S)) AND clear(B,S')
 AND on(A,C,S') \(\Rightarrow\)
 S' = result(move(A,B,C,S), S)

Successor State Axioms

• Action descriptions tell us what has changed, but how do we say what persists?
• This is the “frame problem”
• Successor state axioms:
 – On(C,D,result(A,S)) iff applicable(A,S) AND
 • On(C,D,S), A\neq move, OR
 • On(C,D,S), A=move(A,B,C), C\neq A, D\neq B, OR
 • A=move(C,E,D)
• Need one of these for every proposition!
Overcoming Limitations of Planning via Theorem Proving

- Simplify the representation
- Avoid successor state axioms
- Avoid generality of full, first order logic in hopes of allowing faster, special purpose algorithms for planning

PDDL

- Actions have a set of preconditions and effects
- Think of the world as a database
 - Preconditions specify what must be true in the database for the action to be applied
 - Effects specify which things will be changed in the database if the action is taken

- NB: PDDL supersedes an earlier, similar representation called STRIPS
move(obj, from, to)

- **Preconditions**
 - clear(obj)
 - on(obj, from)
 - clear(to)
- **Effects**
 - Add
 - on(obj, to)
 - clear(from)
 - Delete
 - on(obj, from)
 - clear(to)

Limitations of PDDL

- Assumes that a small number of things change with each action
 - Dominoes
 - Pulling out the bottom block from a stack
- Preconditions and effects are conjunctions
- No quantification
- Closed world assumption (negation in effects only implemented as deletion)
How hard is planning?

• Planning is NP hard
• How can we prove this?
 – Use Planning to solve 3SAT
 – Any 3SAT instance can be converted to a planning problem in polynomial time
 – Polynomial time planning algorithm would imply polynomial time solution to 3SAT

Planning Reduction

• Introduce a predicate for whether a clause is satisfied or unsatisfied

• Goal: satisfied_c_1 AND satisfied_c_2...AND satisfied_c_m

• Initial state: unsatisfied_c_1 AND unsatisfied_c_2...AND unsatisfied_c_m, unassigned(x_1) AND unassigned(x_2) AND ...unassigned(x_n)
set(x_i, value)

- **Preconditions:**
 - unassigned(x_i)

- **Effects**
 - Add
 - assigned(x_i)
 - set(x_i, value)
 - Delete
 - unassigned(x_i)

Satisfy_c_i

- **Preconditions**
 - Unsatisfied_c_i
 - $x_j=v_i(x_j)$ OR $x_k=v_i(x_k)$ OR $x_l=v_i(x_l)$

- **Effects**
 - Add
 - Satisfied_c_i
 - Delete
 - {}

$v_i(x_j) =$ truth value needed by variable j in clause i
How expensive is this reduction?

- How many predicates/propositions are introduced?
- How many actions are introduced?
- What does the plan do?
- What prevents the planner from making inconsistent assignments?

Is planning NP-complete?

- NO!
- Consider the towers of Hanoi:
 - PDDL actions are the block moving actions
- Requires exponential number of moves
- Planning is actually PSPACE complete
- Planning with bounded plans is NP-complete
Should plan size worry us?

• What if you have a problem with an exponential length solution?
• Impractical to execute (or even write down) the solution, so maybe we shouldn’t worry
• Sometimes this may just be an artifact of our action representation
 – Towers of Hanoi solution can be expressed as a simple recursive program
 – Nice if planner could find such programs

Planning Using Search

• Forward Search:
 – As with theorem proving, blind forward search is problematic because of the huge branching factor
 – Some success using this method with carefully chosen action pruning heuristics (not covered in class)
• Backward Search:
 – As with theorem proving, tends to focus search on relevant terms
 – Called “Goal Regression” in the planning context
Goal Regression

- Goal regression is a form of backward search from goals
- Basic principle goes back to Aristotle
- Embodied in earliest AI systems
 - GPS: General Problem Solver by Newell & Simon
- Cognitively plausible
- Idea:
 - Pick actions that achieve (some of) your goal
 - Make preconditions of these actions your new goal
 - Repeat until the goal set is satisfied by start state

Goal Regression Example

Regress \text{on}(x,z)\ through \text{move}(z,\text{table},x)

New goal: \text{clear}(x)

Goal: \text{on}(x,z)
Greed, decomposition in planning

- Does a greedy approach work for planning?

- Idea:
 - Pick actions that satisfy as many parts of the goal as possible
 - If no single action satisfies any part of the goal, break up the goal into pieces and plan to solve each of them individually

- Bad news: This works poorly in general

The Sussman Anomaly

Goal: on(x,y), on(y,z)
Problems with naïve subgoaling

- The number of conjuncts satisfied may not be a good heuristic
- Achieving individual conjuncts in isolation may actually make things harder
- Causes simple planners to go into loops and/or take lots of wasted steps

Summary of Traditional Planners

- Backward search methods were more focused, with careful construction these could be sound and complete generic planners

- Forward search methods worked well when:
 - Search space was very narrow (only a small number of reasonable things to do, which prevented exponential growth in reachable search space)
 - Domain-specific knowledge could be used to narrow the search space
Modern Planners

• One family uses sophisticated heuristics (graphplan)
 – Uses various tricks to narrow search space
 – May use forward or backward planning
• Another family uses forward chaining with domain specific tricks to prune the search space
• Yet another family converts everything into a giant SAT problem and runs a highly optimized SAT solve (SATPlan)

What’s Missing?

• As described, plans are “open loop”
• No provisions for:
 – Actions failing
 – Uncertainty about initial state
 – Observations

• Solutions:
 – Plan monitoring, replanning
 – Conformant/Sensorless planning
 – Contingency planning
Planning Under Uncertainty

• What if there is a probability distribution over possible outcomes?
 – Called: Planning under uncertainty, decision theoretic planning, Markov Decision Processes (MDPs)
 – Much more robust: Solution is a “universal plan”, i.e., a plan for all possible outcomes (monitoring and replanning are implicit)
 – Much more difficult computationally

• What if observations are unreliable?
 – Called: “Partial Observability”, Partially Observable MDPs (POMDPs)
 – Applications to medical diagnosis, defense, sensor planning
 – Way, way harder computationally