Given a “good” SAT solver...

• How do you use it?

• Convert other NP-complete problems to SAT

• Use your “pretty good” SAT solver for them

• What’s the best you could hope for?
A silver bullet for SAT?

- Unless P=NP, you won’t be able to solve every problem efficiently, so
 - Either will be very slow in some cases, or
 - Will completely fail in some cases
- How do we evaluate the quality of a “pretty good” SAT solver?
 - Try on lots of instances?
 - What is a representative set of instances?

Phase Transitions

- Underlying question: What percentage of assignments are satisfying?
- Phase transition is a sharp transition from easy (lots of solutions) to hard (few or no solutions) as some function of problem description
- How does this relate to the hardness of finding a solution?
- How does this relate to the hardness of predicting the solution?
Things to consider when converting another problem to SAT

- What is the cost of doing the conversion (space/time)?
- Does the conversion preserve easy/hard instances?
- After conversion, is your fast SAT solver better than another “pretty good” method in the original problem description?

Modeling How Algorithms Perform

- This idea of modeling how algorithms perform seems neat; can we use it to our advantage?
- Choosing how to allocate computational resources is called meta-computation
- Challenges and benefits:
 - There can be a lot of overhead in doing this
 - In some cases, you can get a speedup on average
- See: http://www.cs.duke.edu/~parr/aaaifs01.ps.gz
Randomization?

- How does randomization help?

- Alternatively: How is it that a randomized algorithm can do better than a systematic algorithm?

- How do we analyze the complexity of a random algorithm?

2-SAT vs MAX-2SAT

- 2-SAT is O(n)

- MAX-2SAT is NP-hard

- Is there a contradiction in this?
Can people do better?

- Is there evidence that people can solve NP-hard problems efficiently?

- How does this relate to intelligence?

All satisfying assignments equally good?

- MAX-SAT asks how many clauses can be satisfied (only interesting if problem is not satisfiable)
- Weighted MAX-SAT assigns weights to clauses and asks if you can achieve a certain score
- This makes sense even if the problem is satisfiable
- What can we say about the hardness of these weighted satisfiability problems?