Introduction to Approximation Algorithms
Ron Parr
CPS 570

Covered Today
• Approximation in general
• Set cover
• A greedy algorithm for set cover
• Submodularity
• A generic greedy algorithm exploiting submodularity

Why use approximation?
• Lots of problems we want to solve are NP-hard optimization problems, often with associated NP-complete decision problems
• Different notions of approximation
 – Search for a "pretty good" answer
 – Return an optimal answer in some cases (fail in others?)
 – Return an answer that is an additive factor from optimal: result = optimal +/- f
 – Return an answer that a multiplicative factor from optimal: result/approximation = f
 – For a given resource level, achieve a lower performance value?
 – For a given performance level, consume more resources?

Set Cover
• Input:
 – A set of atoms: $S = s_1 ... s_n$
 – A set of sets: $C = c_1 ... c_m$
 – Each set contains 1 or more atoms

 • Optimization question: Can you choose k elements from C such that every element of S is in at least one of these k? (This is a called a cover.)

 • Decision question: Exist a cover of size k or less?
Set Cover Example

14 atoms
5 sets

Real Problems Abstracted by Set Cover

• Sensor placement:
 – You have sensors to place in m different locations
 – Each location can observe some fraction of your n targets
 – Find the most efficient sensor allocation to see all targets

• Buying bundles of goods
 – Different vendors offer package deals on different combinations of products (flat rate shipping)
 – Buy all the products you need in the smallest number of transactions

• Choosing advertising outlets
 – Different stations (or newspapers) cover different, possibly overlapping markets
 – Try to cover markets with smallest number of ads

Hardness of Set Cover

• Karp showed that set cover is NP-complete (classic paper on reading list)

• Satisfiability reduces to clique
• Clique reduces to node (vertex) cover
• Node cover reduces to set cover

Node (vertex) Cover

• Input:
 – Graph G=V,E

• Optimization question: What is the smallest set of vertices such that every edge is incident upon one of the vertices
• Decision question: Does there exist a set of nodes of size k such that every edge is incident on one node in k
Reduce Node Cover to Set Cover

• Remember: Must solve node cover w/set cover
• For each edge in the node cover problem, we create an atom in the set cover problem
• For each node in the node cover problem, we create a set s.t. elements of the set correspond to edges incident to the node
• Observe that a set cover of size k exists iff a node cover of size k exists

So, what do we do?

• Settle for a larger k?
 – What if we don’t need the absolute smallest k?
 – Is there an algorithm that gives something close to the smallest?
• Settle for less than full coverage
 – What if we have only k resources?
 – Is there an algorithm that gives us something close to the best we can hope for using k?

Greedy Algorithms

• Greedy algorithms are a general class of algorithms that, loosely speaking, make a choice that gives maximal short term improvement, without considering subsequent choices
• Examples of greedy behavior:
 – Picking the class that is most interesting to you first (ignoring that this might cause scheduling problems with other classes)
 – Positioning a sensor so that it sees the highest number of targets (while ignoring subsequent choices)

Greedy Set Cover

• Repeat until done*
 – For each set not added, check how many previously uncovered atoms it would add
 – Add the set with the biggest increase in the number of atoms covered
• *What is “done”
 – Max of k elements added, or
 – All elements covered
What does greedy do here?

What price greed?

- Assume we have a budget of k
- Optimal picks: $O_1 \ldots O_k$, covering n atoms
- Greedy picks $G_1 \ldots G_k$, covering x atoms
- What is the relationship between x and n?

What price greed (2)?

- $o_i =$ number of new elements covered by O_i
- $g_i =$ number of new elements covered by G_i
- $n = o_1 + o_2 + \ldots + o_k$
- $x = g_1 + g_2 + \ldots + g_k$

What price greed (3)?

- Suppose $o_i > g_i$
- Q: Why didn’t greedy pick O_i?
- A: The only reason would be if greedy already covered $o_i - g_i$ of the elements in o_i in some $g_j, j < i$
- $x \geq (o_1 - g_1) + (o_2 - g_2) + \ldots + (o_k - g_k) = n - x$
- $2x \geq n$
- $x \geq n/2$
- Conclusion: For fixed k, greedy gets at least half as much coverage as optimal
What about minimizing k?

- Suppose optimal coverage uses k to cover n atoms
- Assume we run greedy until it covers everything, taking $h > k$ resources
- Analyze greedy's h choices in batches of k
 - Greedy covers at least $n/2$ in first batch of k
 - Second batch of k covers at least half of remaining atoms. Why? Same analysis can be repeated.

- Conclusion: greedy requires at most $k \log_2 n$ resources
- Note: Our bounds here are not tight

Applying to Other Problems

- If we have a good approximation scheme for one NP-complete problem, does this imply a good approximation scheme for others?
- Depends upon what you mean by “good”...
- The polynomial factor can be a killer here

- Conclusion: Approximation algorithms will tend to be problem specific unless one discovers a more general approach to approximation

Submodularity

- f is a function defined on sets
- Submodular if:
 \[f(X \cup \{z\}) - f(X) \geq f(Y \cup \{z\}) - f(Y) \quad \text{for } X \subseteq Y, X \subseteq \Omega, Y \subseteq X \]
- Monotone if
 \[X \subseteq Y : f(Y) \geq f(X) \]

Submodularity in English

- Adding to a subset has more “bang” than adding to a superset, or
- Diminishing returns for adding to bigger sets

- Monotonicity in English: Bigger is better (though not strictly)
Set Cover?

- Does set cover fit this framework?
- $f =$ number of atoms covered
- Set $\Omega = C$

- Is it submodular?
- Is it monotone?

Maximizing Monotone Submodular Set Functions

- This is NP-hard in general 😞
- Greedy algorithm for maximizing monotone submodular set functions is a $1-1/e$ factor from optimal
- Can use similar argument to set cover to get a resource bound

- This provides a generic procedure for analyzing greedy algorithms for certain classes of hard problems 😊

Greedy Set Cover and Submodularity

- Our greedy algorithm for set cover can be understood as an instance of the greedy approach for submodular set functions

- Conclusion: We get a tighter bound for free!
- $(1-1/e > \frac{1}{2})$

Conclusions

- Avoid worst consequences NP-hardness with clever approximation algorithms (or clever analysis of simple algorithms)
- Caveats:
 - Not all problems admit good approximate solutions
 - Approximation techniques for particular problems don't always carry over to others
- Some generic approaches exist:
 - Greedy algorithms sometimes do well
 - Submodularity provides a generic framework for analyzing certain types of greedy algorithms
 - Other families of approaches exist as well – rounding, LP relaxations, etc.