NP Hardness/Completeness
Overview

Ron Parr
CPS 570

Why Study NP-hardness

- NP hardness is not an AI topic
- It’s important for all computer scientists
- Understanding it will deepen your understanding of AI (and other CS) topics
- You will be expected to understand its relevance and use for AI problems
- Eat your vegetables; they’re good for you

P and NP

- P and NP are about decision problems
- P is set of problems that can be solved in polynomial time
- NP is a superset of P
- NP is the set of problems that:
 - Have solutions which can be verified in polynomial time or, equivalently,
 - can be solved by a non-deterministic Turing machine in polynomial time

- Roughly speaking:
 - Problems in P are tractable – can be solved in a reasonable amount of time, and Moore’s law helps
 - Some problems in NP might not be tractable

Scaling
Isn’t P big?

- P includes $O(n)$, $O(n^2)$, $O(n^{10})$, $O(n^{100})$, etc.
- Clearly $O(n^{10})$ isn’t something to be excited about – not practical
- Computer scientists are very clever at making things that are in P efficient
- First algorithms for some problems are often quite expensive, e.g., $O(n^2)$, but research often brings this down

NP-hardness

- Many problems in AI are NP-hard (or worse)
- What does this mean?
- These are some of the hardest problems in CS
- Identifying a problem as NP hard means:
 - You probably shouldn’t waste time trying to find a polynomial time solution
 - If you find a polynomial time solution, either
 - You have a bug
 - Find a place on your shelf for your Turing award
- NP hardness is a major triumph (and failure) for computer science theory

Understanding the class NP

- A class of decision problems (Yes/No)
- Solutions can be verified in polynomial time
- Examples:
 - Graph coloring:
 - Sortedness: $[1 2 3 4 5 8 7]$
What is NP hardness?

- An NP hard problem is at least as hard as the hardest problems in NP
- The hardest problems in NP are NP-complete (no known poly time solution)
- Demonstrate hardness via reduction
 - Use one problem to solve another
 - A is reduced to B, if we can use B to solve A:

```
A instance ----> Poly-time xformation ----> B Solver
```

Reductions

- If B is NP-complete and A is of unknown difficulty, what does this tell us?
- If A is NP-complete, and B is of unknown difficulty, what does this tell us?

Hardness vs. Completeness

- For something to be NP-complete, must be NP-hard and in NP
- If something is NP-hard, it could be even harder than the hardest problems in NP
- Proving completeness is stronger theoretical result – says more about the problem

Why care about NP-completeness?

- Solving any one NP-complete problem gives you the key to all others (via poly time xformation)
- All NP-complete problems are, in a sense, equivalent
- Insight into solving any one gives you insight into solving a vast array of problems of extraordinary practical and economic significance
One from Many

• How would solving a single NP-complete problem in polynomial time give you the key to all others?

• All NP-complete problems can be transformed into each other via polynomial time transformations

• Poly time solver for B can be converted to a poly time solver for A since polynomials are closed under addition

The First NP Complete Problem
(Cook 1971)

• SAT:

\[(X_1 \lor \overline{X}_7 \lor X_{13}) \land (\overline{X}_2 \lor X_{12} \lor X_{25}) \land \ldots\]

• Want to find an assignment to all variables that makes this expression evaluate to true

• NP-complete for clauses of size 3 or greater

• How would you prove this?

Other NP-Complete Problems

• Graph coloring
• Traveling salesman
• Knapsack
• Subset sum
• P-center (cover n points with p balls)
• Most formulations of planning and scheduling problems
• Vertex Cover
• Max-clique
• Etc.

Hardness w/o completeness?

• NP hardness is a weaker claim (says less about the problem) than NP completeness, but

• NP hard problems might be harder than NP-complete

• NP hard if an NP complete problem is reducible to it

• NP completeness = NP hardness + NP membership

• Consider the problem #SAT
 – How many satisfying assignments to:

\[(X_1 \lor \overline{X}_7 \lor X_{13}) \land (\overline{X}_2 \lor X_{12} \lor X_{25}) \land \ldots\]

 – Is this in NP? (Not even a decision problem)

 – Is it NP-hard?
#SAT is NP-hard

- Theorem: #SAT is NP hard
- Proof:
 - Reduce SAT to #SAT

P=NP?

- Biggest open question in CS
- Can NP-complete problems be solved in polynomial time?
- Probably not, but nobody has been able to prove it yet
- Recent attempt at proof detailed in NY Times, one of many false starts:

How challenging is “P=NP”?

- Princeton University CS department
- See: http://www.cs.princeton.edu/general/bricks.php
- Photo from: http://stuckinthebubble.blogspot.com/2009/07/three-interesting-points-on-princeton.html

What’s harder still?

- P-space hardness
- Algorithms in P-space require polynomial space
- Why is this at least as hard as P-time?
- Still harder: exp-time
How To Avoid Embarrassing Yourself

- Don’t say: ”I proved that it requires exponential time.”
 if you really meant:
 – ”I proved it’s NP-Hard/Complete”
 – ”The best solution I could come up with takes exponential time.”

- Don’t say: ”The problem is NP” (which doesn’t even make sense)
 if you really meant:
 – ”The problem NP-Hard/Complete”

- Don’t reduce new problems to NP-hard complete problems if you
 meant to prove the new problem is hard
- Such a reduction is backwards. What you really proved is that you
 can use a hard problem to solve an easy one. Always think carefully
 about the direction of your reductions

NP-Completeness Summary

- NP-completeness tells us that a problem belongs to
 class of similar, hard problems.

- What if you find that a problem is NP hard?
 – Look for good approximations with provable guarantees
 – Find different measures of complexity
 – Look for tractable subclasses
 – Use heuristics – try to do well on “most” cases