Reinforcement Learning

Ron Parr
CPS 570

RL Highlights

• Everybody likes to learn from experience
• Use ML techniques to generalize from relatively small amounts of experience
• Some notable successes:
 – Backgammon
 – Flying a helicopter upside down
 – Aerobatic helicopter maneuvers
• Sutton’s seminal RL paper is 103rd most cited ref. in computer science (CiteSeerX 11/13); Sutton & Barto RL Book is the 7th most cited

Comparison w/Other Kinds of Learning

• Learning often viewed as:
 – Classification (supervised), or
 – Model learning (unsupervised)
• RL is between these (delayed signal)
• What the last thing that happens before an accident?

Overview

• Review of value determination
• Motivation for RL
• Algorithms for RL
 – Overview
 – TD
 – Q-learning
 – Approximation
Solving for Values

\[V_\pi = \gamma P_\pi V_\pi + R \]

For moderate numbers of states we can solve this system exactly:

\[V_\pi = (I - \gamma P_\pi)^{-1} R \]

Guaranteed invertible because \(P_\pi \) has spectral radius <1

Iteratively Solving for Values

\[V_\pi = \gamma P_\pi V_\pi + R \]

For larger numbers of states we can solve this system indirectly:

\[V_{\pi^1} = \gamma P_{\pi^1} V_{\pi^1} + R \]

Guaranteed convergent because \(P_\pi \) has spectral radius <1 for \(\gamma < 1 \)

Convergence not guaranteed for \(\gamma = 1 \)

Overview

- Review of value determination
- Motivation for RL
- Algorithms for RL
 - Overview
 - TD
 - Q-learning
 - Approximation

Why We Need RL

- Where do we get transition probabilities?
- How do we store them?
 - Big problems have big models
 - Model size is quadratic in state space size
- Where do we get the reward function?
RL Framework

- Learn by “trial and error”
- No assumptions about model
- No assumptions about reward function
- Assumes:
 - True state is known at all times
 - Immediate reward is known
 - Discount is known

RL for Our Game Show

- Problem: We don’t know probability of answering correctly

- Solution:
 - Buy the home version of the game
 - Practice on the home game to refine our strategy
 - Deploy strategy when we play the real game

Model Learning Approach

- Learn model, solve
- How to learn a model:
 - Take action a in state s, observe s’
 - Take action a in state s, n times
 - Observe s’ m times
 - \(P(s'|s,a) = m/n \)
 - Fill in transition matrix for each action
 - Compute avg. reward for each state
- Solve learned model as an MDP

Limitations of Model Learning

- Partitions learning, solution into two phases
- Model may be large
 - Hard to visit every state lots of times
 - Note: Can’t completely get around this problem...
- Model storage is expensive
- Model manipulation is expensive
Overview

- Review of value determination
- Motivation for RL
- Algorithms for RL
 - TD
 - Q-learning
 - Approximation

Temporal Differences

- One of the first RL algorithms
- Learn the value of a fixed policy
 (no optimization; just prediction)
- Recall iterative value determination:

\[
V_{\pi, i+1}(s) = R(s, \pi(s)) + \gamma \sum_{s'} P(s' | s, \pi(s)) V_{\pi, i}(s')
\]

Problem: We don’t know this.

Temporal Difference Learning

- Remember Value Determination:

\[
V_{i+1}^{\pi}(s) = R(s, \pi(s)) + \gamma \sum_{s'} P(s' | s, \pi(s)) V^{\pi}(s')
\]

- Compute an update as if the observed \(s' \) and \(r \) were the only possible outcomes:

\[
V_{\text{temp}}(s) = r + \gamma V^{\pi}(s')
\]

- Make a small update in this direction:

\[
V_{i+1}^{\pi}(s) = (1 - \alpha) V^{\pi}(s) + \alpha V_{\text{temp}}(s)
\]

0 < \(\alpha \leq 1 \)

Note: we have dropped the \(\pi \) subscripts

Idea: Value Function Soup

Suppose: \(\alpha = 0.1 \)

Upon observing \(s' \):
- Discard 10% of soup
- Refill with \(V_{\text{temp}}(s) \)
- Stir
- Repeat

\[
V_{i+1}^{\pi}(s) = (1 - \alpha) V^{\pi}(s) + \alpha V_{\text{temp}}(s)
\]
Suppose our current estimate: $V(s_3)=15K$
We play and get the question wrong

V_{temp} = 0
$V(s_3) = (1-\alpha)15K + \alpha 0$

– This could still cause a big jump in $V(s)$

Convergence?

• Why doesn’t this oscillate?
 – e.g. consider some low probability s' with a very high (or low) reward value

Convergence Intuitions

• Need heavy machinery from stochastic process theory to prove convergence
• Main ideas:
 – Iterative value determination converges
 – TD updates approximate value determination
 – Samples approximate expectation

Ensuring Convergence

• Rewards have bounded variance
• $0 \leq \gamma < 1$
• Every state visited infinitely often
• Learning rate decays so that:
 – $\sum_s \alpha(s) = \infty$
 – $\sum_s \alpha_i^*(s) < \infty$

These conditions are jointly \textit{sufficient} to ensure convergence in the limit with probability 1.
How Strong is This?

- Bounded variance of rewards: easy
- Discount: standard
- Visiting every state infinitely often: Hmm...
- Learning rate: Often leads to slow learning
- Convergence in the limit: Weak
 - Hard to say anything stronger w/o knowing the mixing rate of the process
 - Mixing rate can be low; hard to know a priori

Using TD for Control

- Recall value iteration:
 \[V_{i+1}(s) = \max_a R(s,a) + \gamma \sum_s P(s'|s,a)V_i(s') \]
- Why not pick the maximizing \(a \) and then do:
 \[V_{i+1}(s) = (1 - \alpha)V_i(s) + \alpha V^{\text{temp}}(s) \]
 - \(s' \) is the observed next state after taking action \(a \)

Problems

- Pick the best action w/o model?
- Must visit every state infinitely often
 - What if a good policy doesn’t do this?
- Learning is done “on policy”
 - Taking random actions to make sure that all states are visited will cause problems

Q-Learning Overview

- Want to maintain good properties of TD
- Learns good policies and optimal value function, not just the value of a fixed policy
- Simple modification to TD that learns the optimal policy regardless of how you act! (mostly)
Q-learning

- Recall value iteration:
 \[V^{i+1}(s) = \max_a R(s,a) + \gamma \sum_{s'} P(s'|s,a)V'(s') \]
- Can split this into two functions:
 \[Q^{i+1}(s,a) = R(s,a) + \gamma \sum_{s'} P(s'|s,a)V^{i}(s') \]
 \[V^{i+1}(s) = \max_a Q^{i+1}(s,a) \]

Q-learning Properties

- Converges under same conditions as TD
- Still must visit every state infinitely often
- Separates policy you are currently following from value function learning:
 \[Q^{\text{temp}}(s,a) = r + \gamma \max_{a'} Q'(s',a') \]
 \[Q^{i+1}(s,a) = (1 - \alpha)Q'(s,a) + \alpha Q^{\text{temp}}(s,a) \]

Note: If there is only one action possible in each state, then Q-learning and TD-learning are identical.

Q-learning

- Store Q values instead of a value function
- Makes selection of best action easy
- Update rule:
 \[Q^{\text{temp}}(s,a) = r + \gamma \max_{a'} Q'(s',a') \]
 \[Q^{i+1}(s,a) = (1 - \alpha)Q'(s,a) + \alpha Q^{\text{temp}}(s,a) \]

Value Function Representation

- Fundamental problem remains unsolved:
 - TD/Q learning solves model-learning problem, but
 - Large models still have large value functions
 - Too expensive to store these functions
 - Impossible to visit every state in large models
- Function approximation
 - Use machine learning methods to generalize
 - Avoid the need to visit every state
Function Approximation

- General problem: Learn function f(s)
 - Linear regression
 - Neural networks
 - State aggregation (violates Markov property)

- Idea: Approximate f(s) with g(s,θ)
 - g is some easily computable function of s and θ
 - Try to find θ that minimizes the error in g

Linear Regression

- Define a set of basis functions (vectors)
 \(\phi_1(s), \phi_2(s) \ldots \phi_k(s) \)

- Approximate f with a weighted combination of these
 \(g(s) = \sum_{j=1}^{k} w_j \phi_j(s) \)

- Example: Space of quadratic functions:
 \(\phi_1(s) = 1, \phi_2(s) = s, \phi_3(s) = s^2 \)

- Orthogonal projection minimizes SSE

Updates with Approximation

- Recall regular TD update:
 \[V^{i+1}(s) = (1 - \alpha)V^i(s) + \alpha V_{temp}^i(s) \]

- With function approximation:
 \[V(s) = V(s, w) \]

- Update:
 \[w^{i+1}_j = (1 - \alpha)w^i_j + \alpha V_{temp}^i(s) \nabla_w V(s, w) \]

For linear value functions

- Gradient is trivial:
 \[V(s, w) = \sum_{j=1}^{k} w_j \phi_j(s) \]

- Update is trivial:
 \[w^{i+1}_j = (1 - \alpha)w^i_j + \alpha V_{temp}^i(s) \phi_j(s) \]
Properties of approximate RL

- Exact case (tabular representation) = special case
- Can be combined with Q-learning

- Convergence not guaranteed
 - Policy evaluation with linear function approximation converges if samples are drawn “on policy”
 - In general, convergence is not guaranteed
 - Chasing a moving target
 - Errors can compound
- Success requires very well chosen features

Swept under the rug...

- Difficulty of finding good features
- Partial observability
- Exploration vs. Exploitation

Conclusions

- Reinforcement learning solves an MDP
- Converges for exact value function representation
- Can be combined with approximation methods
- Good results require good features