Choosing Predictors

CPS 570
Ron Parr

Regression figures provided by Christopher Bishop and © 2007 Christopher Bishop

What is the Best Choice of Polynomial?

Noisy Source Data

Degree 0 Fit

Degree 1 Fit
Observations

• Degree 3 is the best match to the source
• Degree 9 is the best match to the samples
• We call this over-fitting
• Performance on test data:

What went wrong?

• Is the problem a bad choice of polynomial?
• Is the problem that we don’t have enough data?
• Answer: Yes
Methods for Choosing Features

• Cross validation

• Regularization
 – Non-Bayesian (L_1, L_2, etc.)
 – Bayesian

Cross Validation

• Suppose we have many possible hypothesis spaces, e.g., different degree polynomials
• Recall our empirical performance results:

 Why not use the data to find min of the red curve?

Implementing Cross Validation

• Many possible approaches to cross validation

• Typical approach divides data into k equally sized chunks:
 – Do k instances of learning
 – For each instance hold out 1/k of the data
 – Train on (k-1)/k fraction of the data
 – Test on held out data
 – Average results

• Can also sample subsets of data with replacement

• Cross validation can be used to search range of hypothesis classes to find where overfitting starts

Problems with Cross Validation

• Cross validation is a sound method, but requires a lot of data and/or is slow

• Must trade off two factors:
 – Want enough data within each run
 – Want to average over enough trials

• With scarce data:
 – Choose k close to n
 – Almost as many learning problems as data points

• With abundant data (then why are you doing cross validation?)
 – Choose k = a small constant, e.g., 10
 – Not too painful if you have a lot of parallel computing resources and a lot of data, e.g., if you are Google
Regularization

- Cross validation may also be impractical if range of hypothesis classes is not easily enumerated a searched iteratively
- Regularization aims to avoid overfitting, while
 - Avoiding speed penalty of cross validation
 - Not assuming an ordering on hypothesis spaces
- ...but you still need to do some kind of cross-validation in the end.

L₂ Regularization: Why?

\[\frac{1}{2} \| \mathbf{w} \|^2 + \sum_{i=1}^{M} (y(x_i; \mathbf{w}) - t_i)^2 \]
- For polynomials, extreme curves typically require extreme values
- In general, balances using full expressiveness of hypothesis space with performance
- Problem: How to choose \(\lambda \) (cross validation?)

The L₂ Regularized Solution

- Minimize:
 \[\frac{1}{2} \| \mathbf{w} \|^2 + \sum_{i=1}^{M} (y(x_i; \mathbf{w}) - t_i)^2 \]
- Set gradient to 0, solve for \(\mathbf{w} \) for features \(\Phi \):
 \[\mathbf{w} = (\Phi^\top \Phi + \lambda I)^{-1} \Phi^\top \mathbf{t} \]
- Compare with unregularized solution
 \[\mathbf{w} = (\Phi^\top \Phi)^{-1} \Phi^\top \mathbf{t} \]
A Bayesian Perspective

- Suppose we have a space of possible hypotheses H.
- Which hypothesis has the highest posterior:

$$P(H \mid D) = \frac{P(D \mid H)P(H)}{P(D)}$$

- $P(D)$ does not depend on H; maximize numerator.
- Uniform $P(H)$ is called Maximum Likelihood solution (model for which data has highest prob.).
- $P(H)$ can be used for regularization.

Maximum Likelihood

- For many models, the empirical mean is also the maximum likelihood solution.
- Suppose:
 - Data normally distributed
 - Unknown mean, variance
 - IID samples

$$P(D \mid H) = P(t^{(1)} \ldots t^{(n)} \mid \mu, \sigma)$$

$$= \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(t_i-\mu)^2}{2\sigma^2}}$$

Priors for Gaussians

- Recall Bayes rule:

$$P(H \mid D) = \frac{P(D \mid H)P(H)}{P(D)}$$

- Does it make sense to have a $P(H)$ for Gaussians?
- Yes: Corresponds to some prior knowledge about the mean or variance.
- Would like this knowledge to have a mathematically convenient form.

Bayesian Regression

- Assume that, given x, noise is Gaussian.
- Homoscedastic noise model.

$$g(x, w)$$
Maximum Likelihood Solution

\[P(D | H) = P(t^{(1)} \ldots t^{(m)} | y(x; w), \sigma) \]
\[= \prod_{i=1}^{m} e^{\frac{-(t^{(i)} - y(x_i; w))^2}{2\sigma^2}} \]

- ML fit for mean is just linear regression fit
- ML fit for mean does not depend upon \(\sigma \)

Bayesian Solution

- Introduce prior distribution over weights

\[p(H) = p(w | \alpha) = N(w | 0, \frac{1}{\alpha}) \]

- Posterior now becomes:

\[P(D | H)P(H) = P(t^{(1)} \ldots t^{(m)} | y(x; w), \sigma)P(w) \]
\[= \prod_{i=1}^{m} e^{\frac{-(t^{(i)} - y(x_i; w))^2}{2\sigma^2}} e^{\frac{-\omega'w}{2}} \frac{1}{2\pi^{(k+1)/2}} \]

Comparing Regularized Regression with Bayesian Regression

- L2 Regularized Regression minimizes:

\[\lambda \|w\|_2^2 + \sum_{i=1}^{M} (y(x_i; w) - t^{(i)})^2 \]

- Bayesian Regression maximizes:

\[\prod_{i=1}^{m} e^{\frac{-(t^{(i)} - y(x_i; w))^2}{2\sigma^2}} e^{\frac{-\omega'w}{2}} \frac{1}{2\pi^{(k+1)/2}} \]

- Observation: Take log of Bayesian regression criterion and these become identical (up to constants) with \(\lambda = \alpha \).

What L2 Regularization Does

- Also known as
 - “shrinkage”
 - Tikhanov Regularization

\[\lambda \|w\|_2^2 + \sum_{i=1}^{M} (y(x_i; w) - t^{(i)})^2 \]

- Trades performance on training set for lower parameter values
- Squaring favors lots of small weights over a few large ones
LASSO

• The general form of regularized regression:
 \[\lambda \|w\|_1 + \sum_{i=1}^{M} (y(x_i^0; w) - t_i)^2 \]

• What if we used the 1-norm instead 2-norm for \(f \):
 \[\lambda \|w\|_1 + \sum_{i=1}^{M} (y(x_i^0; w) - t_i)^2 \]

Norm Balls

\[\text{q-norm balls for different values of q} \]

Regularization and Norm Balls

• \(L_2 \) ball
 — Smooth
 — Chance of hitting 0 values is vanishingly small

• \(L_1 \) ball
 — Pointy
 — Chance of hitting all non-0 values vanishingly small

What \(L_1 \) Regularization Does

• Trades performance on training data against \(L_1 \) norm of the weights
• Favors sparse solutions
• Relationship to compressed sensing:
 — Compressed sensing aims to find a sparse combination of basis functions that are consistent with observations
 — Formulated as an \(L_1 \) minimization problem
Implementing LASSO

• Several different approaches are possible:
 – Minimize weighted sum of training error and L1 norm on weights
 – Minimize training error subject to a strict bound on L1 norm of weights

• Both can easily be implemented as a convex program
• Also possible to solve incrementally using an algorithm called LARS

Working with 1-norm

• Suppose you want to minimize the 1-norm of a vector \mathbf{x} within a linear program

\[
\begin{align*}
\text{Minimize:} & \quad \sum_i e_i \\
\text{Subject to:} & \quad \forall i : e_i \geq x_i \\
& \quad e_i \geq -x_i
\end{align*}
\]

Bayesian Interpretation

• Note that we can always come up with a Bayesian interpretation of any regularization parameter f:

\[
f(\|\mathbf{w}\|) = \sum_i [y(x_i) : \mathbf{w} - t_i]^t
\]

• Assume Gaussian noise
• Choose a prior on the weights which differentiates to f
• Lasso = assumption of Laplace (double exponential) distribution:

\[
\rho(x | \mu, b) = \frac{1}{b} e^{-\frac{|x - \mu|}{b}}
\]

Bayesian vs. Non-Bayesian Regularization

• Is there really a difference?
• Bayesian view is arguably more justified, but
• Can’t we always find a Bayesian interpretation of anything by taking an integral and calling it a prior?
• But do all priors have frequentist counterparts?

• What about hyper-priors?
 – Priors on priors
 – Actually makes sense if # of parameters is decreasing
 – Actually works!
More thoughts on Bayesian approaches

• Priors open the door to a rich and potentially well motivated way to introduce prior knowledge
• Hyperpriors may reduce or completely eliminate the need for cross validation
• Main drawback: Many priors do not reduce to clean optimization problems

Which is better L_1 or L_2?

• No clear winner
• L_2:
 – Easier to implement
 – Sometimes gives better performance on test data
• L_1:
 – More expensive (no direct solution)
 – Gives more understandable answers
 – Good choice if you have reason to believe the true answer is sparse

Why not L_0 norm?

• L_0 norm is the best norm to use for sparseness
• Counts number of non-zero parameters
• Problem: This is not tractable

• In many scenarios, e.g. compressed sensing, it has been shown the L_1 is a reasonable approximation to L_0

Other ways to get sparseness

• Forward selection:
 – Start with a small feature set
 – Gradually add features until performance (checked with cross validation) stops improving
• Backward elimination:
 – Start with all features
 – Gradually remove features
• Issues:
 – Both methods can be slow
 – Both methods are greedy
Conclusions

- Regularization trades training set performance against solution complexity
- Can reduce the need for cross validation, but
 - Regularization parameters still must be chosen
 - Hyperpriors might help here
- L_2 regularization favors many small weights
- L_1 regularization favors few/sparse weights
- L_2 and L_1 both have Bayesian counterparts