Q-Learning Review

- Want to maintain good properties of TD
- Learns good policies and optimal value function, not just the value of a fixed policy
- Simple modification to TD that learns the optimal policy regardless of how you act! (mostly)

Q-learning

- Store Q values instead of a value function
- Makes selection of best action easy
- Update rule:

\[Q_{t+1}(s,a) = r + \gamma \max_{a'} Q^t(s',a') \]
\[Q^t(s,a) = (1 - \alpha)Q^t(s,a) + \alpha Q_{t+1}(s,a) \]
Q-learning Properties

• Converges under same conditions as TD
• Still must visit every state infinitely often
• Separates policy you are currently following from value function learning:

\[
Q^{\text{temp}}(s,a) = r + \gamma \max_{a'} Q(s',a')
\]

\[
Q^{i+1}(s,a) = (1 - \alpha)Q^i(s,a) + \alpha Q^{\text{temp}}(s,a)
\]

Note: If there is only one action possible in each state, then Q-learning and TD-learning are identical

Value Function Representation

• Fundamental problem remains unsolved:
 • TD/Q learning solves model-learning problem, but
 • Large models still have large value functions
 • Too expensive to store these functions
 • Impossible to visit every state in large models

• Function approximation
 • Use machine learning methods to generalize
 • Avoid the need to visit every state

Function Approximation

• General problem: Learn function f(s)
 • Linear regression
 • Neural networks
 • State aggregation (violates Markov property)

• Idea: Approximate f(s) with g(s,\theta)
 • g is some easily computable function of s and \theta
 • Try to find \theta that minimizes the error in g

Updates with Approximation

• Recall regular Q update:

\[
Q^{i+1}(s,a) = (1 - \alpha)Q^i(s,a) + \alpha Q^{\text{temp}}(s,a)
\]

• With function approximation:

• Update:

\[
w^{i+1} = w^i + \alpha (Q^{\text{temp}}(s,a) - Q^i(s,a;w))R_s Q(s,a;w)
\]

Vector operations

Neural networks are a special case of this.
Learning to play Backgammon

• Neurogammon developed in 1989 using supervised learning
 • Trained NN on expert human moves
 • Played at level of intermediate human player

• TD-gammon developed in 1992 using RL
 • Neural network value function approximation
 • TD sufficient (known model)
 • Using raw board positions, learned to play as well as neurogammon
 • Tesauro added carefully selected features to the network
 • Then had it play 1 million games played against self
 • Comparable performance to best human players

RL after TD-gammon

• For 20 years after TD-gammon, many tried to reproduce success of combination of RL with neural networks for other domains
 • Often FAILED with bad policies or weights that diverged (went to infinity)

• Community largely retreated into linear value function approximation and focused on techniques for generating and selecting good features

• Deepmind Deep RL result causes seismic shift in community comparable or larger to Tesauro's result

Switch to David Silver’s Slides