Markov Decision Processes (MDPs)

The Winding Path to RL

- Decision Theory
- Descriptive theory of optimal behavior
- Markov Decision Processes
- Mathematical/Algorithmic realization of Decision Theory
- Reinforcement Learning
- Application of learning techniques to challenges of MDPs with numerous or unknown parameters

Covered Today

- Decision Theory Review
- MDPs
- Algorithms for MDPs
 - Value Determination
 - Optimal Policy Selection
 - Value Iteration
 - Policy Iteration

Decision Theory

What does it mean to make an optimal decision?

- Asked by economists to study consumer behavior
- Asked by MBAs to maximize profit
- Asked by leaders to allocate resources
- Asked in OR to maximize efficiency of operations
- Asked in AI to model intelligence
- Asked (sort of) by any intelligent person every day
Utility Functions

- A utility function is a mapping from world states to real numbers
- Also called a value function
- Rational or optimal behavior is typically viewed as maximizing expected utility:

\[
\max_a \sum_s P(s \mid a) U(s)
\]

\(a = \text{actions, } s = \text{states}\)

Playing a Game Show

- Assume series of questions
 - Increasing difficulty
 - Increasing payoff
- Choice:
 - Accept accumulated earnings and quit
 - Continue and risk losing everything
- “Who wants to be a millionaire?”

Swept under the rug today

- Utility of money (assumed 1:1)
- How to determine costs/utilities
- How to determine probabilities

State Representation

Dollar amounts indicate the payoff for getting the question right

Probabilistic Transitions on Attempt to Answer

N.B.: These exit transitions should actually correspond to states

Downward green arrows indicate the choice to exit the game

Green indicates profit at exit from game
Making Optimal Decisions

• Work backwards from future to present

• Consider $50,000 question
 – Suppose $P(\text{correct}) = 1/10$
 – $V(\text{stop}) = $11,100
 – $V(\text{continue}) = 0.9 \times $0 + 0.1 \times $61.1K = $6.11K$

• Optimal decision stops

Working Backwards

$V=\$3,749 \quad V=\$4,166 \quad V=\$5,555 \quad V=\$11.1K$

Decision Theory Review

• Provides theory of optimal decisions

• Principle of maximizing utility

• Easy for small, tree structured spaces with
 – Known utilities
 – Known probabilities

Covered in Today

• Decision Theory

• MDPs

• Algorithms for MDPs
 – Value Determination
 – Optimal Policy Selection
 • Value Iteration
 • Policy Iteration
Dealing with Loops

Suppose you can pay $1000 (from any losing state) to play again

From Policies to Linear Systems

• Suppose we always pay until we win.
• What is value of following this policy?

\[
\begin{align*}
V(s_0) &= 0.10(-1000 + V(s_0)) + 0.90V(s_1) \\
V(s_1) &= 0.25(-1000 + V(s_0)) + 0.75V(s_2) \\
V(s_2) &= 0.50(-1000 + V(s_0)) + 0.50V(s_3) \\
V(s_3) &= 0.90(-1000 + V(s_0)) + 0.10(61100)
\end{align*}
\]

And the solution is...

\[
\begin{align*}
V(s_0) &= 34.43K \\
V(s_1) &= 32.95K \\
V(s_2) &= 32.58K \\
V(s_3) &= 32.47K
\end{align*}
\]

w/o cheat

The MDP Framework

• State space: S
• Action space: A
• Transition function: P
• Reward function: \(R(s,a,s') \) or \(R(s,a) \) or \(R(s) \)
• Discount factor: \(\gamma \)
• Policy: \(\pi(s) \rightarrow a \)

Objective: Maximize expected, discounted return (decision theoretic optimal behavior)
Applications of MDPs

- **AI/Computer Science**
 - Robotic control (Koenig & Simmons, Thrun et al., Kaelbling et al.)
 - Air Campaign Planning (Meuleau et al.)
 - Elevator Control (Barto & Crites)
 - Computation Scheduling (Zilberstein et al.)
 - Control and Automation (Moore et al.)
 - Spoken dialogue management (Singh et al.)
 - Cellular channel allocation (Singh & Bertsekas)

- **Economics/Operations Research**
 - Fleet maintenance (Howard, Rust)
 - Road maintenance (Golabi et al.)
 - Packet Retransmission (Feinberg et al.)
 - Nuclear plant management (Rothwell & Rust)

- **EE/Control**
 - Missile defense (Bertsekas et al.)
 - Inventory management (Van Roy et al.)
 - Football play selection (Patek & Bertsekas)

- **Agriculture**
 - Herd management (Kristensen, Toft)

The Markov Assumption

- Let S_t be a random variable for the state at time t
- $P(S_t|A_{t-1}S_{t-1},...,A_0S_0) = P(S_t|A_{t-1}S_{t-1})$
- Markov is special kind of conditional independence
- Future is independent of past given current state
Understanding Discounting

- **Mathematical motivation**
 - Keeps values bounded
 - What if I promise you $0.01 every day you visit me?

- **Economic motivation**
 - Discount comes from inflation
 - Promise of $1.00 in future is worth $0.99 today

- **Probability of dying**
 - Suppose ϵ probability of dying at each decision interval
 - Transition w/prob ϵ to state with value 0
 - Equivalent to $1-\epsilon$ discount factor

Discounting in Practice

- Often chosen unrealistically low
 - Faster convergence of the algorithms we’ll see later
 - Leads to slightly myopic policies

- Can reformulate most algs. for avg. reward
 - Mathematically uglier
 - Somewhat slower run time

Covered Today

- **Decision Theory**
- **MDPs**
- **Algorithms for MDPs**
 - Value Determination
 - Optimal Policy Selection
 - Value Iteration
 - Policy Iteration

Value Determination

Determine the value of each state under policy π

$$V(s) = R(s, \pi(s)) + \gamma \sum_{s'} P(s' \mid s, \pi(s))V(s')$$

Bellman Equation for a fixed policy π

$$V(s_1) = 1 + \gamma(0.4V(s_2) + 0.6V(s_3))$$

\[
\begin{array}{c}
S1 \\
\ \\ 0.4
\end{array}
\begin{array}{c}
S2 \\
\ \\ \text{R=1}
\end{array}
\begin{array}{c}
S3 \\
0.6
\end{array}
\]
Matrix Form

\[P = \begin{pmatrix}
P(s_1 \mid s_1, \pi(s_1)) & P(s_2 \mid s_1, \pi(s_1)) & P(s_3 \mid s_1, \pi(s_1)) \\
P(s_1 \mid s_2, \pi(s_2)) & P(s_2 \mid s_2, \pi(s_2)) & P(s_3 \mid s_2, \pi(s_2)) \\
P(s_1 \mid s_3, \pi(s_3)) & P(s_2 \mid s_3, \pi(s_3)) & P(s_3 \mid s_3, \pi(s_3))
\end{pmatrix} \]

\[V = \gamma P \pi V + R \]

This is a generalization of the game show example from earlier

How do we solve this system efficiently? Does it even have a solution?

Solving for Values

\[V = \gamma P \pi V + R \]

For moderate numbers of states we can solve this system exactly:

\[V = (I - \gamma P \pi)^{-1} R \]

Guaranteed invertible because \(\gamma P \pi \)

has spectral radius <1

Iteratively Solving for Values

\[V = \gamma P \pi V + R \]

For larger numbers of states we can solve this system indirectly:

\[V^{i+1} = \gamma P \pi V^i + R \]

Guaranteed convergent because \(\gamma P \pi \)

has spectral radius <1

Establishing Convergence

- Eigenvalue analysis
 (don't worry if you don't know this)

- Monotonicity
 - Assume all values start pessimistic
 - One value must always increase
 - Can never overestimate
 - Easy to prove

- Contraction analysis...
Contraction Analysis

- Define maximum norm
 \[\| V \|_\infty = \max_i V[i] \]
- Consider V1 and V2
 \[\| V^a_i - V^b_i \|_\infty = \varepsilon \]
- WLOG say
 \[V^a_i \leq V^b_i + \varepsilon \] (Vector of all \(\varepsilon \)’s)

Contraction Analysis Contd.

- At next iteration for \(V^b \):
 \[V^b_i = R + \gamma P V^b \]
- For \(V^a \)
 \[V^a_i = R + \gamma P (V^a) \leq R + \gamma P (V^a + \varepsilon) = R + \gamma P V^b + \varepsilon \]
- Conclude:
 \[\| V^a - V^b \|_\infty \leq \gamma \varepsilon \]

Importance of Contraction

- Any two value functions get closer
- True value function \(V^* \) is a fixed point (value doesn’t change with iteration)
- Max norm distance from \(V^* \) decreases \textit{dramatically} quickly with iterations
 \[\| V^0 - V^* \|_\infty = \varepsilon \rightarrow \| V^n - V^* \|_\infty \leq \gamma^n \varepsilon \]

Covered Today

- Decision Theory
- MDPs
- Algorithms for MDPs
 - Value Determination
 - Optimal Policy Selection
 - Value Iteration
 - Policy Iteration
Finding Good Policies

Suppose an expert told you the “true value” of each state:

\[V(S1) = 10 \]
\[V(S2) = 5 \]

Improving Policies

- How do we get the optimal policy?
- If we knew the values under the optimal policy, then just take the optimal action in every state
- How do we define these values?
- Fixed point equation with choices (Bellman equation):

\[V^*(s) = \max_a R(s,a) + \gamma \sum_{s'} P(s'|s,a)V^*(s') \]

Decision theoretic optimal choice given \(V^* \)
 - If we know \(V^* \), picking the optimal action is easy
 - If we know the optimal actions, computing \(V^* \) is easy
 - How do we compute both at the same time?

Value Iteration

We can’t solve the system directly with a max in the equation
Can we solve it by iteration?

\[V^{i+1}(s) = \max_a R(s,a) + \gamma \sum_{s'} P(s'|s,a)V^i(s') \]

- Called value iteration or simply successive approximation
- Same as value determination, but we can change actions

Convergence:
- Can’t do eigenvalue analysis (not linear)
- Still monotonic
- Still a contraction in max norm (exercise)
- Converges quickly

Properties of Value Iteration

- VI converges to the optimal policy
 (implicit in the maximizing action at each state)
- Why? (Because we figure out \(V^* \))
- Optimal policy is stationary (i.e. Markovian – depends only on current state)
- Why? (Because we are summing utilities. Thought experiment: Suppose you think it’s better to change actions the second time you visit a state. Why didn’t you just take the best action the first time?)
Covered Today

- Decision Theory
- MDPs
- Algorithms for MDPs
 - Value Determination
 - Optimal Policy Selection
 - Value Iteration
 - Policy Iteration

Greedy Policy Construction

Let’s name the action that looks best WRT V:

$$
\pi_v(s) = \arg\max_a R(s,a) + \gamma \sum_{s'} P(s'|s,a)V(s')
$$

Expectation over next-state values

$$
\pi_v = \text{greedy}(V)
$$

Consider our first policy

<table>
<thead>
<tr>
<th>V</th>
<th>V</th>
<th>V</th>
<th>V</th>
<th>w/o cheat</th>
</tr>
</thead>
<tbody>
<tr>
<td>$=$3.7K</td>
<td>$=$4.1K</td>
<td>$=$5.6K</td>
<td>$=$11.1K</td>
<td></td>
</tr>
</tbody>
</table>

Recall: We played until last state, then quit
Is this greedy with cheat option?
Value of paying to cheat in the first state is:
$$0.1(-1000 + 3.7K) + 0.9(4.1K) = 3960$$
(much better than just giving up, which has value 0)

Bootstrapping: Policy Iteration

Idea: Greedy selection is useful even with suboptimal V

Guess $\pi_v = \pi_0$

$V_{\pi} =$ value of acting on π

(solve linear system)

$\pi_v \leftarrow \text{greedy}(V_{\pi})$

Repeat until policy doesn’t change

Guaranteed to find optimal policy

Usually takes very small number of iterations

Computing the value functions is the expensive part
Comparing VI and PI

- **VI**
 - Value changes at every step
 - Policy may change at every step
 - Many cheap iterations
- **PI**
 - Alternates policy/value updates
 - Solves for value of each policy exactly
 - Fewer, slower iterations (need to invert matrix)

Convergence
- Both are contractions in max norm
- PI is shockingly fast in practice

Computational Complexity

- VI and PI are both contraction mappings w/rate γ
 - (we didn’t prove this for PI in class)
- VI costs less per iteration
- For n states, a actions PI tends to take $O(n)$ iterations in practice
 - Fewer, slower iterations (need to invert matrix)
 - Recent results indicate $O(n^2a/1-\gamma)$ worst case
 - Interesting aside: Biggest insight into PI came ~50 years after the algorithm was introduced

MDP Difficulties \rightarrow Reinforcement Learning

- MDP operate at the level of *states*
 - States = atomic events
 - We usually have exponentially (or infinitely) many of these
- We assume P and R are known

Machine learning to the rescue!
- Infer P and R (implicitly or explicitly from data)
- Generalize from small number of states/policies

Advanced Topics

- Multiple agents
- Reinforcement Learning
- Partial observability