NP Hardness/Completeness

Overview

Ron Parr
CompSci 570

Why Study NP-hardness

• NP hardness is not an AI topic
• It’s important for all computer scientists
• Understanding it will deepen your understanding of AI (and other CS) topics
• You will be expected to understand its relevance and use for AI problems
• Eat your vegetables; they’re good for you

P and NP

• P and NP are about decision problems
• P is set of problems that can be solved in polynomial time
• NP is a superset of P
• NP is the set of problems that:
 – Have solutions which can be verified in polynomial time or, equivalently,
 – can be solved by a non-deterministic Turing machine in polynomial time
• Roughly speaking:
 – Problems in P are tractable – can be solved in a reasonable amount of time, and faster computers help
 – Some problems in NP might not be tractable

Scaling
Isn’t P big?

- P includes $O(n)$, $O(n^2)$, $O(n^{10})$, $O(n^{100})$, etc.
- Clearly $O(n^{10})$ isn’t something to be excited about – not practical
- Computer scientists are very clever at making things that are in P efficient
- First algorithms for some problems are often quite expensive, e.g., $O(n^3)$, but research often brings this down

NP-hardness

- Many problems in AI are NP-hard (or worse)
- What does this mean?
- These are some of the hardest problems in CS
- Identifying a problem as NP hard means:
 - You probably shouldn’t waste time trying to find a polynomial time solution
 - If you find a polynomial time solution, either
 - You have a bug
 - Find a place on your shelf for your Turing award
- NP hardness is a major triumph (and failure) for computer science theory

NP-hardness

- Why it is a failure:
 - Huge class of problems with no known efficient solutions
 - We have failed, as a community, find efficient solutions or prove that none exist
- Why it is a triumph:
 - Developed a precise language for talking about these problems
 - Developed sophisticated ways to reason about and categorize the problems we don’t know how to solve efficiently
 - Developing an arsenal of approximation algorithms for hard problems

Understanding the class NP

- A class of decision problems (Yes/No)
- Solutions can be verified in polynomial time
- Examples:
 - Graph coloring:
 - Sortedness: [1 2 3 4 5 8 7]
What is NP hardness?

• An NP hard problem is at least as hard as the hardest problems in NP
• The hardest problems in NP are NP-complete (no known poly time solution)
• Demonstrate hardness via reduction
 – Use one problem to solve another
 – A is reduced to B, if we can use B to solve A:

Reductions

A instance → Poly-time xformation → B Solver
poly time A solver if B is poly time

Examples of NP-Complete Problems

• \(\geq 3 \) coloring
• \(\geq 3 \)SAT
• Clique
• Set cover & vertex cover
• Traveling salesman
• Knapsack
• Subset sum
• Many, many, more...

Hardness vs. Completeness

• For something to be NP-complete, must be NP-hard and in NP
• If something is NP-hard, it could be even harder than the hardest problems in NP

• Proving completeness is stronger theoretical result – says more about the problem
SAT-The First NP-Complete Problem

• Given a set of binary variables
• Conjunction of disjunctions of these variables
 \((x_1 \lor \bar{x}_3 \lor x_7) \land (\bar{x}_1 \lor x_12 \lor x_9) \land \cdots \)
• Does there exist a satisfying assignment? (assignment that makes the expression evaluate to true)

Cook’s Result in a Cartoon

Assumptions: TM is a non-deterministic Turing machine with polynomial run time, i.e., a solver for problems in NP.
Poly time solver for SAT would solve any problem in NP in Poly time

Why NP-completeness is SO important

• All NP-complete problems:
 – Are in NP
 – Got there by poly time transformation
 – Can solve any other problem in NP after poly time transformation

• Solving any one NP-complete problem in poly time unlocks ALL NP-complete problems!
• Cracking just one means P=NP!

How To Prove SAT is NP-Complete?

• Note: Clearly in NP
• Challenge: Nothing from which to reduce because this was the first NP-complete problem
• Idea (Cook 1971):
 – Input:
 • Any non-deterministic Turing machine - TM
 • Any input to that Turing machine - X
 • A polynomial bound on the run time of the machine
 – Output: A polynomial size SAT expression which evaluates to true IFF TM accepts X
• Conclusion: Solving SAT in poly time implies solving any problem in NP in poly time
P=NP?

- Biggest open question in CS
- Can NP-complete problems be solved in polynomial time?
- Probably not, but nobody has been able to prove it yet

How challenging is “P=NP?”

- Princeton University CS department
- See: http://www.cs.princeton.edu/general/bricks.php
- Photo from: http://studentbubble.blogspot.com/2009/07/three-interesting-points-on-princeton.html

Generalization

- Show problem A is NP-hard because known NP-hard problem B is a special case of A
- Example: SAT generalizes 3SAT
 - Every valid 3SAT instance is a valid SAT instance
 - A poly-time SAT solver would, therefore, ALSO be a poly time 3SAT solver
 - Conclusion: SAT is at least as hard as 3SAT: NP-hard
- How does this relate to reductions?

Reduction: 3SAT -> Ind. Set

- Independent set: Given G=(V,E), does there exist a set of vertices of size k such that no two share an edge?
- Reduce 3SAT to independent set:
 - 3 nodes for each clause (corresponding to variable settings), and connect them in a 3-clique
 - Connect all nodes with complementary settings of the same variable
 - Pick k = # of clauses
k-clique -> Subgraph Isomorphism

• k-clique: Given $G=(V,E)$, does there exist a fully connected component of size k?

• Subgraph isomorphism: Given graphs G and H, does there exist a subgraph of G that is isomorphic to H?

• (isomorphic = identical up to node relabelings)

• On board

Optimization vs. Decision

• Optimization: Find the largest clique

• Decision: Does there exist a clique of size k?

• NP is a family of decision problems

• In many cases, we can reduce optimization to decision

Weak vs. Strong Hardness

• Some problems can be brute-forced if the range of numbers involved is not large (note: range is exponential in input size)

• Subset sum: \exists subset of a group of natural numbers that sums to k?
 – Use dynamic programming
 – Answer question for $1\ldots j$
 – Build answer for $j+1$ from answers to $1\ldots j$
 – Build up to k

• Such problems are weakly NP-hard

What’s harder still?

• P-space hardness

• Algorithms in P-space require polynomial space

• Why is this at least as hard as P-time?

• Still harder: exp-time
How To Avoid Embarrassing Yourself

• Don’t say: “I proved that it requires exponential time.” if you really meant:
 – “I proved it’s NP-Hard/Complete”
 – “The best solution I could come up with takes exponential time.”

• Don’t say: “The problem is NP” (which doesn’t even make sense) if you really meant:
 • “Problem is in NP” (often a weak statement)
 • “The problem NP-Hard/Complete” (usually a strong statement)

• Don’t reduce new problems to NP-hard complete problems if you meant to prove the new problem is hard
• Such a reduction is backwards. What you really proved is that you can use a hard problem to solve an easy one. Always think carefully about the direction of your reductions

NP-Completeness Summary

• NP-completeness tells us that a problem belongs to class of similar, hard problems.

• What if you find that a problem is NP hard?
 – Look for good approximations with provable guarantees
 – Find different measures of complexity
 – Look for tractable subclasses
 – Use heuristics – try to do well on “most” cases