Reinforcement Learning

Ron Parr
CPS 570

RL Highlights

- Everybody likes to learn from experience
- Use ML techniques to generalize from relatively small amounts of experience

- Some notable successes:
 - Playing Atari games
 - Aerobatic helicopter maneuvers
 - Go

- Sutton’s seminal RL paper is 178th most cited ref. in computer science (Citeseerx 11/16); Sutton & Barto RL Book is the 7th most cited

Comparison w/Other Kinds of Learning

- Learning often viewed as:
 - Classification (supervised), or
 - Model learning (unsupervised)

- RL is between these (delayed signal)

- What the last thing that happens before an accident?

Overview

- Review of value determination

- Motivation for RL

- Algorithms for RL
 - Overview
 - TD
 - Q-learning
 - Approximation
Solving for Values

\[V_\pi = \gamma P_\pi V_\pi + R_\pi \]

For moderate numbers of states we can solve this system exactly:

\[V_\pi = (I - \gamma P_\pi)^{-1} R_\pi \]

Guaranteed invertible because \(\gamma P_\pi \) has spectral radius <1

Iteratively Solving for Values

\[V_\pi = \gamma P_\pi V_\pi + R_\pi \]

For larger numbers of states we can solve this system indirectly:

\[V_{\pi_{i+1}} = \gamma P_\pi V_{\pi_i} + R_\pi \]

Guaranteed convergent because \(\gamma P_\pi \) has spectral radius <1 for \(\gamma < 1 \)

Convergence not guaranteed for \(\gamma = 1 \)

Overview

- Review of value determination
- Motivation for RL
- Algorithms for RL
 - Overview
 - TD
 - Q-learning
 - Approximation

Why We Need RL

- Where do we get transition probabilities?
- How do we store them?
 - Big problems have big models
 - Model size is quadratic in state space size
- Where do we get the reward function?
RL Framework

- Learn by “trial and error”
- No assumptions about model
- No assumptions about reward function
- Assumes:
 - True state is known at all times
 - Immediate reward is known
 - Discount is known

RL for Our Game Show

- Problem: Don’t know prob. of answering correctly
- Solution:
 - Buy the home version of the game
 - Practice on the home game to refine our strategy
 - Deploy strategy when we play the real game

Model Learning Approach

- Learn model, solve
- How to learn a model:
 - Take action a in state s, observe s’
 - Take action a in state s, n times
 - Observe s’ m times
 - $P(s’|s,a) = m/n$
 - Fill in transition matrix for each action
 - Compute avg. reward for each state
- Solve learned model as an MDP

Limitations of Model Learning

- Partitions learning, solution into two phases
- Model may be large
 - Hard to visit every state lots of times
 - Note: Can’t completely get around this problem...
- Model storage is expensive
- Model manipulation is expensive
Overview

• Review of value determination
• Motivation for RL
• Algorithms for RL
 – TD
 – Q-learning
 – Approximation

Temporal Differences

• One of the first RL algorithms
• Learn the value of a fixed policy
 (no optimization; just prediction)
• Recall iterative value determination:

\[
V_{i+1}(s) = R(s, \pi(s)) + \gamma \sum_{s'} P(s'|s, \pi(s))V_i(s')
\]

Problem: We don’t know this.

Temporal Difference Learning

• Remember Value Determination:

\[
V^{i+1}(s) = R(s, \pi(s)) + \gamma \sum_{s'} P(s'|s, \pi(s))V'(s')
\]

• Compute an update as if the observed \(s'\) and \(r\) were the only possible outcomes:

\[
V_{\text{temp}}(s) = r + \gamma V'(s')
\]

• Make a small update in this direction:

\[
V^{i+1}(s) = (1 - \alpha)V'(s) + \alpha V_{\text{temp}}(s)
\]

0 < \(\alpha\) ≤ 1

Note: we have dropped the \(\pi\) subscripts

Idea: Value Function Soup

Suppose: \(\alpha = 0.1\)

Upon observing \(s'\):
• Discard 10% of soup
• Refill with \(V_{\text{temp}}(s)\)
• Stir
• Repeat

One vat for each state

\[
V^{i+1}(s) = (1 - \alpha)V'(s) + \alpha V_{\text{temp}}(s)
\]
Example: Home Version of Game

Suppose our current estimate: $V(s_3)=15,000$
We play and get the question wrong

$V_{emp} = 0$
$V(s_3) = (1-\alpha)15,000 + \alpha 0$

Convergence?

Why doesn’t this oscillate?
– e.g. consider some low probability s' with a very high (or low) reward value
– This could still cause a big jump in $V(s)$

Convergence Intuitions

Need heavy machinery from stochastic process theory to prove convergence
Main ideas:
– Iterative value determination converges
– TD updates approximate value determination
– Samples approximate expectation

Ensuring Convergence

Rewards have bounded variance
$0 \leq \gamma < 1$
Every state visited infinitely often
Learning rate decays so that:

$\sum_{s} a(s) = \infty$
$\sum_{s'} a'(s') < \infty$

These conditions are jointly sufficient to ensure convergence in the limit with probability 1.
How Strong is This?

- Bounded variance of rewards: easy
- Discount: standard
- Visiting every state infinitely often: Hmmm...
- Learning rate: Often leads to slow learning
- Convergence in the limit: Weak
 - Hard to say anything stronger w/o knowing the mixing rate of the process
 - Mixing rate can be low; hard to know a priori

Using TD for Control

- Recall value iteration:

\[V^{i+1}(s) = \max_a R(s, a) + \gamma \sum_{s'} P(s'|s, a)V'(s') \]

- Why not pick the maximizing \(a \) and then do:

\[V^{i+1}(s) = (1 - \alpha)V^i(s) + \alpha V^{\text{temp}}(s) \]

 - \(s' \) is the observed next state after taking action \(a \)

Problems

- Pick the best action w/o model?
- Must visit every state infinitely often
 - What if a good policy doesn’t do this?
- Learning is done “on policy”
 - Taking random actions to make sure that all states are visited will cause problems

Q-Learning Overview

- Want to maintain good properties of TD
- Learns good policies and optimal value function, not just the value of a fixed policy
- Simple modification to TD that learns the optimal policy regardless of how you act! (mostly)
Q-learning

- Recall value iteration:

\[V_{i+1}(s) = \max_a R(s,a) + \gamma \sum_{s'} P(s'|s,a)V_i(s') \]

- Can split this into two functions:

\[Q_{i+1}(s,a) = R(s,a) + \gamma \sum_{s'} P(s'|s,a)V_i(s') \]

\[V_{i+1}(s) = \max_a Q_{i+1}(s,a) \]

Q-learning

- Store Q values instead of a value function
- Makes selection of best action easy
- Update rule:

\[Q^\text{temp}(s,a) = r + \gamma \max_{a'} Q^i(s',a') \]

\[Q_{i+1}(s,a) = (1 - \alpha)Q^i(s,a) + \alpha Q^\text{temp}(s,a) \]

Q-learning Properties

- Converges under same conditions as TD
- Still must visit every state infinitely often
- Separates policy you are currently following from value function learning:

\[Q^\text{temp}(s,a) = r + \gamma \max_{a'} Q^i(s',a') \]

\[Q_{i+1}(s,a) = (1 - \alpha)Q^i(s,a) + \alpha Q^\text{temp}(s,a) \]

Note: If there is only one action possible in each state, then Q-learning and TD-learning are identical

Value Function Representation

- Fundamental problem remains unsolved:
 - TD/Q learning solves model-learning problem, but
 - Large models still have large value functions
 - Too expensive to store these functions
 - Impossible to visit every state in large models

- Function approximation
 - Use machine learning methods to generalize
 - Avoid the need to visit every state
Function Approximation

• General problem: Learn function f(s)
 – Linear regression
 – Neural networks
 – State aggregation (violates Markov property)

• Idea: Approximate f(s) with g(s, θ)
 – g is some easily computable function of s and θ
 – Try to find θ that minimizes the error in g

Linear Regression review

• Define a set of basis functions (vectors)
 \(\phi_1(s), \phi_2(s), \ldots, \phi_k(s) \)

• Approximate f with a weighted combination of these
 \(g(s) = \sum_{i=1}^{k} \theta_i \phi_i(s) \)

• Example: Space of quadratic functions:
 \(\phi_1(s) = 1, \phi_2(s) = s, \phi_3(s) = s^2 \)

• Orthogonal projection minimizes SSE

Updates with Approximation

• Recall regular TD update:
 \[V^{i+1}(s) = (1 - \alpha)V^i(s) + \alpha V^\text{temp}(s) \]

• With function approximation:
 \[V(s) \approx V(s, w) \]

• Update:
 \[w^{i+1} = w^i + \alpha (V^\text{temp}(s) - V^i(s)) \nabla_w V(s, w) \]

For linear value functions

• Gradient is trivial:
 \[V(s, w) = \sum_{i=1}^{k} \theta_i \phi_i(s) \]
 \[\nabla_w V(s, w) = \phi_j(s) \]

• Update is trivial:
 \[w^{i+1} = w^i + \alpha (V^\text{temp}(s) - V^i(s)) \nabla_w V(s, w) \]
Properties of approximate RL

- Exact case (tabular representation) = special case
- Can be combined with Q-learning

- Convergence not guaranteed
 - Policy evaluation with linear function approximation converges if samples are drawn “on policy”
 - In general, convergence is not guaranteed
 - Chasing a moving target
 - Errors can compound
- Success has often required very well chosen features, but this may be changing (deep RL)

Swept under the rug...

- Difficulty of finding good features
- Partial observability
- Exploration vs. Exploitation

Conclusions

- Reinforcement learning solves an MDP
- Converges for exact value function representation
- Can be combined with approximation methods