Neural Network
Introduction

CPS 271
Ron Parr

Why Neural Networks?

- Maybe we should make our computers more brain-like:

<table>
<thead>
<tr>
<th></th>
<th>Computers</th>
<th>Brains</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computational Units</td>
<td>10^9 gates/CPU</td>
<td>10^{11} neurons</td>
</tr>
<tr>
<td>Storage Units</td>
<td>10^{10} bits RAM</td>
<td>10^{13} neurons</td>
</tr>
<tr>
<td></td>
<td>10^{12} bits HD</td>
<td>10^{14} synapses</td>
</tr>
<tr>
<td>Cycle Time</td>
<td>10^{-2} S</td>
<td>10^{-3} S</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>10^{10} bits/s</td>
<td>10^{14} bits/s</td>
</tr>
<tr>
<td>Compute Power</td>
<td>10^9 Ops/s</td>
<td>10^{14} Ops/s</td>
</tr>
</tbody>
</table>

Neural Network Motivation

- Individual neurons are slow, boring
- Brains succeed by using massive parallelism
- Copy what works
- Raises many issues:
 - Is the computational metaphor suited to the computational hardware?
 - How do we know if we are copying the important part?
 - Are we aiming too low?

Artificial Neural Networks

- Develop abstraction of function of actual neurons
- Simulate large, massively parallel artificial neural networks on conventional computers
- Some have tried to build the hardware too
- Try to approximate human learning, robustness to noise, robustness to damage, etc.

Use of neural networks

- Trained to pronounce English
 - Training set: Sliding window over text, sounds
 - 95% accuracy on training set
 - 78% accuracy on test set
- Trained to recognize handwritten digits
 - >99% accuracy
- Trained to drive
 (Pomerleau’s no-hands across America)

Neural Network Lore

- Neural nets have been adopted with an almost religious fervor within the AI community several times
- They are often ascribed near magical powers by people, usually those who know the least about computation or brains
- For most AI people, the magic is gone, but neural nets remain extremely interesting and useful mathematical objects
Artificial Neurons

\[a_i = g(\sum_j w_j a_j) \]

Threshold Functions

- \(g(x) = \text{sgn}(x) \)
- \(g(x) = \frac{1}{1 + e^{-x}} \) (similar)

Network Architectures

- Cyclic vs. Acyclic
 - Cyclic is tricky, but more biologically plausible
 - Hard to analyze in general
 - May not be stable
 - Need to assume latches to avoid race conditions
 - Hopfield nets: special type of cyclic net useful for associative memory
- Single layer (perceptron)
- Multiple layer

Feedforward Networks

- We consider acyclic networks
- One or more computational layers
- Entire network viewed as computing a complex non-linear function
- Typical uses in learning:
 - Classification
 - Function approximation

Single Layer Function Approximation

- \(g \) function is a pass through
- Output is weighted combination of inputs
- Goal: Minimize squared error
- But this is just regression!
 - Find least squares fit
 - Orthogonal projection

Why is single layer case interesting?

- Relates biologically plausible structure to mathematical procedure
- Is the computation to determine the weights plausible?
- Idea: Break down procedure into an iteration that can be done by a “simple” neuron
Solving by Gradient Descent

\[E = 0.5 \sum_i \text{error}(x_i, w)^2 \]

\[= 0.5 \sum_i \left(\sum_k w_k x_{ik} - t_k \right)^2 \]

\[\frac{\partial E}{\partial w_j} = \sum_i \left(\sum_k w_k x_{ik} - t_k \right) x_{ij} \]

\[\Delta w_j = -\eta \frac{\partial E}{\partial w_j} \]

\[w_j \leftarrow w_j + \Delta w_j \]

Summary

- Each “neuron” must know:
 - Difference between output and target
 - Weights
- Updates done in batch
- Gradient descent to global optimum
- Robbins-Monro approach
 - Decreasing step sizes prevent oscillation
 - On-line updates possible

Classification

- Classification and regression very similar
- Linear discriminants exist for special cases of normal distributions (approximation for others)
- Issues
 - Activation function
 - Training Algorithm

Perceptron

\[a_i \quad w_j \]

\[\text{node/ neuron} \]

\[g \]

\[g \text{ is a simple step function (sgn)} \]

Perceptron Learning

- We are given a set of inputs \(X_1 \ldots X_n \)
- \(T_1 \ldots T_n \) is a set of target outputs (boolean)
- \(w \) is our set of weights
- \(\text{net}(X,w) \) = output of perceptron
 - input \(X_i \)
 - weights \(w \)
- \(\text{error}(X,w) = T_i \cdot \text{net}(X,w) \)
- Goal: Pick \(w \) to optimize:

\[\min_w \sum_i \text{error}(X_i, w) \]

Update Rule

Repeat until convergence:

\[\forall i \forall j: w_j \leftarrow w_j + \eta x_{ij} \text{error}(x_i, w) \]

“Learning Rate”

- \(\eta \) iterates over samples
- \(j \) iterates over weights

http://neuron.eng.wayne.edu/java/Perceptron/New38.html
Compare with Least Squares

Perceptron:
\[w_j \leftarrow w_j + \eta x_{i,j} \text{error}(x_i, w) \]

Least Squares:
\[w_j \leftarrow w_j - \eta x_{i,j} \sum_k w_k x_{ik} - I_k \]
\[w_j \leftarrow w_j - \eta x_{i,j} \text{error}(x_i, w) \]

Perceptron Learning Properties

- **Good news:**
 - If there exists a set of weights that will correctly classify every example, the perceptron learning rule will find it
 - Does not depend on step size
- **Bad news:**
 - Perceptrons can represent only a small class of functions, "linearly separable," functions
 - May oscillate if not separable

Linearly Separable Functions

What is a perceptron really doing?

It checks if a linear combination of the inputs is greater than a threshold.

\[w_1 x_1 + w_2 x_2 \ldots + w_n x_n > 0 \]?

Perceptron asks: On what side of a hyperplane does \(x \) lie?

Visualizing Linearly Separable Functions

Is red linearly separable from green?
Are the circles linearly separable from the squares?

Observations

- Linear separability is fairly weak
- We have other tricks:
 - Functions that are not linearly separable in one space, may be linearly separable in another space
 - If we twiddle our inputs to our neural network, then we change the space in which we are constructing linear separators
 - Every function has a linear separator (in some space)
- Perhaps other network architectures will help