Reinforcement Learning

CPS 271
Ron Parr

Limitations of the MDP Framework

- Assumes that transition probabilities known
 - How do we discover these?
 - How do we store them?
 - Big problems have big models
 - Model size is quadratic in state space size
- Assumes reward function is known

Reinforcement Learning

- Learn by “trial and error”
- No assumptions about model
- No assumptions about reward function
- Assumes:
 - True state is known at all times
 - Reward is known
 - Discount is known

RL Schema

- Act
- Perceive next state
- Update value function
- Repeat

Highlights

- Trial and error methods can be mapped to the dynamic programming/MDP framework
- Easy to implement
 - Easy to code
 - Low CPU utilization
- Incremental approach converges in the limit to the same answer as traditional methods
- Can be combined with function approximation – with some caveats
- Has been used successfully in many domains

Model Learning Approach

- Model learning + solving = Certainty Equivalence
- How to learn a model:
 - Take action a in state s, observe s'
 - Take action a in state s, n times
 - Observe s' m times
 - P(s'|s,a) = m/n
 - Fill in transition matrix for each action
 - Compute avg. reward for each state
- Solve Learned model as an MDP
Limitations of Model Learning

- Partitions learning, solution into two phases
- Model may be large (hard to visit every state lots of times)
 - Note: Can't completely get around this problem...
- Model storage is expensive
- Model manipulation is expensive

Temporal Difference Learning

- One of the first RL algorithms
- Learn the value of a fixed policy (no optimization; just prediction)
- Compare with iterative value determination:
 \[V^{i+1}(s) = R(s) + \gamma \sum_{s'} P(s'|s) V^i(s') \]

 Problem: We don't know this.

First Idea: Monte Carlo Sampling

- Assume that we have a black box:
 \[S \rightarrow \text{Box} \rightarrow S' \]
- Count the number of times we see each \(s' \)
 - Estimate \(P(s'|s) \) for each \(s' \)
 - Essentially learns a mini-model for state \(s \)
 - Can think of as numerical integration
- Problem: The world doesn't work this way

Next Idea

- Remember Value Determination:
 \[V^{\text{MC}}(s) = R(s) + \gamma \sum_{s'} P(s'|s) V^{\text{MC}}(s') \]
- Compute an update as if the observed \(s' \) and \(r \) were the only possible outcomes:
 \[V^{\text{MC}}(s) = r + \gamma V^{\text{MC}}(s') \]
- Make a small update in this direction:
 \[V^{\text{MC}}(s) = (1-\alpha) V^{\text{MC}}(s) + \alpha V^{\text{MC}}(s) \]
 \[0 < \alpha \leq 1 \]

Convergence?

- Why doesn't this oscillate?
 - e.g. consider some low probability \(s' \) with a very high (or low) reward value
- This could still cause a big jump in \(V(s) \)

Ensuring Convergence

- Rewards have bounded variance
 - \(0 \leq \gamma < 1 \)
- Every state visited infinitely often
- Learning rate decays so that:
 \[\sum a_i(s) = \infty \]
 \[\sum a_i(s') < \infty \]

These conditions are jointly sufficient to ensure convergence in the limit with probability 1.
How Strong is This?

- Bounded variance of rewards: easy
- Discount: standard
- Visiting every state infinitely often: Hmmm...
- Learning rate: Often leads to slow learning
- Convergence in the limit: Weak
 - Hard to say anything stronger w/o knowing the mixing rate of the process
 - Mixing rate can be low; hard to know a prior

Value Function Representation

- Fundamental problem remains unsolved:
 - TD learning solves model-learning problem, but
 - Large models still have large value functions
 - Too expensive to store these functions
 - Impossible to visit every state in large models
- Function approximation
 - Use machine learning methods to generalize
 - Avoid the need to visit every state

Function Approximation

- General problem: Learn function f(s)
 - Perception
 - Linear regression
 - Neural networks
- Idea: Approximate f(s) with g(s,w)
 - g is some easily computable function of s and w
 - Try to find w that minimizes the error in g

Implementing VFA

- Can't represent V as a big vector
- Use (parametric) function approximator
 - Neural network
 - Linear regression (least squares)
 - Nearest neighbor (with interpolation)
- (Typically) sample a subset of the the states
- Use function approximation to "generalize"

Basic Value Function Approximation

Idea: Consider restricted class of value functions
Hope to generalize from subset of states to all

Sample subset of states

Bellman equation

Alternate value iteration with supervised learning

VFA Outline

1. Initialize \(V_0(s, w_0) \), \(n=1 \)
2. Select some \(s_0, \ldots, s_n \)
3. For each \(s \)
 \[V(s) = R(s) + \gamma \max_a \sum P(s'|s,a) V(s') \]
4. Compute \(V_n(s, w_n) \) by training \(w \) on \(\hat{V} \)
5. \(n := n+1 \)
6. Unless \(V_{n+1} - V_n \leq \epsilon \) goto 2

If supervised learning error is "small", then \(V_{\text{final}} \) "close" to \(V^* \).
Key Questions

• Stability
 – Do values converge to some point or region?

• Quality bounds (assuming convergence)
 – How close are we to optimal?

Stability Problem

Problem: Most VFA methods are unstable

![Diagram of state transition](s1 -> s2)

No rewards, \(\gamma = 0.9 \): \(V^* = 0 \)

Example: Bertsekas & Tsitsiklis 1996

Least Squares Approximation

Restrict \(V \) to linear functions:

\[
\begin{align*}
V(s) &= \text{linear function of } \theta \\
V(s_1) &= \theta, \\
V(s_2) &= 2\theta
\end{align*}
\]

Counterintuitive Result: If we do a least squares fit of \(\theta \)

\[
\theta^{t+1} = 1.08 \theta^t
\]

Unbounded Growth of \(V \)

What Went Wrong?

• VI reduces error in maximum norm
• Least squares (= projection) non-expansive in \(L_2 \)
• May increase maximum norm distance
• Grows max norm error at faster rate than VI shrinks it
• And we didn’t even use sampling!
• Seems like bad news for neural networks…

• Success depends on
 – sampling distribution
 – pairing approximator and problem
• Good feature engineering can succeed (TD-Gammon)

Types of Success with VFA

• Empirical
 – Use domain knowledge to choose family of functions carefully
 – Tricky…

• Theoretical
 – Establish a posteriori bounds in case of convergence (weak)
 – Pick special function approximation methods that permit a priori bounds
Success Stories - Linear TD
- [Tsitsiklis & Van Roy 96, Bratke & Barto 96]
- Start with a set of basis functions
- Restrict V to linear space spanned by bases
- Do weighted projection

$$\Pi = \text{Projection}$$

Restricted Linear Space

N.B. linear is still expressive due to basis functions

Linear Regression
- Define a set of basis functions (vectors)
 $$h_i(s) = \sum_{i} w_i h_i(s)$$
- Approximate f with a weighted combination of these basis functions
 $$g(x) = \sum_{i} w_i h_i(s)$$
- Example: Space of quadratic functions:
 $$h_i(s) = 1, h_i(s) = s, h_i(s) = s^2$$
- Orthogonal projection minimizes sum of squared errors

Formal Properties
- Use to evaluate policies only
- Converges w.p. 1
- Error measured w.r.t. stationary distribution
- Frequently visited states have low error
- Infrequent states can have high error

$$\|V - \hat{V}\|_\rho \leq \frac{\|V - \Pi \rho V \#\|_\rho}{\sqrt{1 - k^2}}$$

Linear Methods
- Applications
 - Inventory control: Van Roy et al.
 - Packet routing: Marbach et al.
 - Used by Morgan Stanley to value options
- No guarantees when combined with policy improvement
 - Can produce bad policies for trivial problems [Koller & Parr 99]
- Modified for better PI: LSP [Lagoudakis & Parr 01]
- Can be done symbolically [Koller & Parr 00]
- Issues
 - Selection of basis functions
 - Mixing rate of process - affects κ, speed

Success Story: Averagers [Gordon 95, and others...]
- Pick set, $Y = y_1, ..., y_i$, of representative states
- Perform VI on Y
- For x not in Y,
 $$V(x) = \sum \beta_i J(y_i)$$
 $$0 \leq \beta_i \leq 1$$
 $$\sum \beta_i = 1$$
- Averagers are non expansions in max norm
- Converge to within $1/(1-\gamma)$ factor of “best”

Interpretation of Averagers
$$V(x) = \sum \beta_i J(y_i)$$
Interpretation of Averagers II

Averagers Interpolate:

\[y_1, y_2, y_3, y_4 \]

Grid vertices = Y

Neural Networks

- s = input into neural network
- w = weights of neural network
- g(s, w) = output of network
- Try to minimize

\[E = \sum (f(s) - g(s, w))^2 \]

- Compute gradient of error wrt weights

\[\frac{\partial E}{\partial w} \]

- Adjust weights in direction that minimizes error

Combining NNs with TD

- Recall TD:

\[V_{\text{step}}(s) = R(s) + \gamma V'(s') \]

\[V^{\text{td}}(s) = (1 - \alpha)V'(s) + \alpha V^{\text{step}}(s) \]

- Compute error function:

\[E = \left[\hat{V}(s, w) - \tilde{V}^{\text{step}}(s, w) \right]^2 \]

- Update:

\[w^{\text{td}} = w' - \alpha \frac{\partial E}{\partial w} \]

\[= w' + 2\alpha \left[\tilde{V}^{\text{step}}(s, w) - \hat{V}(s, w) \right] \frac{\partial \hat{V}(s, w)}{\partial w} \]

Gradient-based Updates

\[w^{\text{td}} = w' - \alpha \frac{\partial E}{\partial w} \]

\[= w' + 2\alpha \left[\tilde{V}^{\text{step}}(s, w) - \hat{V}(s, w) \right] \frac{\partial \hat{V}(s, w)}{\partial w} \]

- Constant factor absorbed into learning rate
- Table-updates are a special case
- Perceptron, linear regression are special cases
- Converges for linear architectures (Tsitsiklis & Van Roy)

Using TD for Control

- Recall value iteration:

\[V^{\text{td}}(s) = R(s) + \max_a \sum_{s'} P(s'|s, a) V'(s') \]

- Why not pick the maximizing a and then do:

\[V^{\text{td}}(s) = (1 - \alpha)V'(s') + \alpha V^{\text{step}}(s') \]

- s' is the observed next state after taking action a

Problems

- How do you pick the best action w/o model?
- Must visit every state infinitely often
 - What if a good policy doesn’t do this?
- Learning is done “on policy”
 - Taking random actions to make sure that all states are visited will cause problems
- Linear function approximation doesn’t provably converge for optimization (but is still used successfully in many cases!)
Q-Learning Overview

- Want to maintain good properties of TD
- Learns good policies and optimal value function, not just the value of a fixed policy
- Simple modification to TD that learns the optimal policy regardless of how you act! (mostly)

Q-learning

- Recall value iteration:
 \[V^{i+1}(s) = R(s) + \max_a \sum_{s'} P(s'|s,a)V^i(s') \]
- Can split this into two functions:
 \[Q^{i+1}(s,a) = R(s) + \sum_{s'} P(s'|s,a)V^i(s') \]
 \[V^{i+1}(s) = \max_a Q^{i+1}(s,a) \]

Q-learning

- Store Q values instead of a value function
- Makes selection of best action easy
- Update rule:
 \[Q^{\text{old}}(s,a) = r + V^i(s') \]
 \[Q^{i+1}(s,a) = (1 - \alpha)Q^i(s,a) + \alpha Q^{\text{old}}(s,a) \]

Q-learning Properties

- For table representations, converges under same conditions as TD
- Still must visit every state infinitely often
- Separates policy you are currently following from value function learning:
 \[Q^{\text{imp}}(s,a) = r + V^i(s') \]
 \[Q^{i+1}(s,a) = (1 - \alpha)Q^i(s,a) + \alpha Q^{\text{imp}}(s,a) \]

Q-learning Properties

- Can’t prove convergence with function approximation
- Introduces exploration vs. exploitation dilemma