Choosing Predictors

CPS 271
Ron Parr

Regression figures provided by Christopher Bishop and © 2007 Christopher Bishop

What Makes a Good Prediction?

- Obviously: One that gives best performance in the future, but how do we pick this in advance?
- Best match to training set?
- Best match to training set (with regularization)?
- Distribution over hypotheses?
- Convergence to “truth” in the limit of infinite data?
- Data themselves + some interpolation rule?

Loss Functions

- Predict y, measure performance against target t
- One performance criterion is the squared loss:
 \[E(y - t)^2 \]
- Suppose we predict the mean, loss is then:
 \[E(\bar{t} - t)^2 \]

Expectation Minimize Loss

- Suppose you need to bet on an outcome (e.g. die roll)
- Suppose loss is squared error, want:
 \[\min_{\bar{t}} E(y - \bar{t})^2 \]
- Minimize and solve for \bar{y}

Sample Mean is Consistent

- Suppose we observe $X^{(1)} ... X^{(n)}$
- Assume these are independently drawn, and identically distributed (IID)
- What is our estimate for $E(X)$?
 \[\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X^{(i)} \]
 Why?
 \[E(\bar{X}) = E\left(\frac{1}{n} \sum_{i=1}^{n} X^{(i)} \right) = \frac{nE(X)}{n} = E(X) \]
 Also...

Chebyshev’s Inequality

- Let X have finite mean and variance:
 \[P(|X - E(X)| \geq c) \leq \frac{Var(X)}{c^2} \]
- Variance governs our chances of missing the mean
Convergence of Sample Mean

- Apply Chebyshev’s inequality to sample mean

\[
P(\left| \bar{X} - E(\bar{X}) \right| \geq c) \leq \frac{\text{Var}(\bar{X})}{c^2}
\]

\[
\text{Var}(\bar{X}) = \text{Var} \left(\frac{\sum_{i=1}^{n} X_i}{n} \right) = \frac{1}{n^2} \text{Var}(X_i) = \frac{\text{Var}(X)}{n}
\]

\[
\lim_{n \to \infty} P(\left| \bar{X} - E(\bar{X}) \right| \geq c) \leq \frac{\text{Var}(X)}{nc^2} = 0
\]

Sample Variance

- Generalization of sample mean:

\[
\sigma^2 = \frac{\sum_{i=1}^{n} (x^{(i)} - \bar{X})^2}{n}
\]

- Sample variance is biased:

\[
E(\bar{\sigma}^2) = \sigma^2 \frac{n-1}{n}
\]

Fitting Continuous Data (Regression)

- Datum \(i\) has feature vector: \(\phi = (\phi_1(x^{(i)}), \ldots, \phi_k(x^{(i)}))\)
- Has real valued target: \(t^{(i)}\)
- Concept space: linear combinations of features:

\[
y(x^{(i)}; w) = \sum_{j=1}^{k} \phi_j(x^{(i)})w_j = \phi(x^{(i)})^T w
\]

- Learning objective: Search to find “best” \(w\)
- (This is standard “data fitting” that most people learn in some form or another.)

Linearity of Regression

- Regression typically considered a \textit{linear} method, but...
- Features not necessarily linear
- and, BTW, features not necessarily linear

Regression Examples

- Predicting housing price from:
 - House size, lot size, rooms, neighborhood*, etc.
- Predicting weight from:
 - Sex, height, ethnicity, etc.
- Predicting life expectancy increase from:
 - Medication, disease state, etc.
- Predicting crop yield from:
 - Precipitation, fertilizer, temperature, etc.
- Fitting polynomials
 - Features are monomials

What Regression Does

- Regression
 - Minimizes squared error on training set
 - Projects training set into linear subspace spanned by the features

- We will prove some of these properties later in the class
What is the Best Choice of Polynomial?

- **Degree 0 Fit**
 - $M = 0$

- **Degree 1 Fit**
 - $M = 1$

- **Degree 3 Fit**
 - $M = 3$

- **Degree 9 Fit**
 - $M = 9$

Observations

- Degree 3 is the best match to the source
- Degree 9 is the best match to the samples
- We call this over-fitting
- Performance on test data:
What went wrong?

- Is the problem a bad choice of polynomial?
- Is the problem that we don’t have enough data?
- Answer: Yes

Regularization

- Idea: Penalize overly complicated answers
- Regular regression minimizes:
 $$\sum_{i=1}^n (y(x^i; w) - t_i)^2$$
- Regularized regression minimizes:
 $$\sum_{i=1}^n (y(x^i; w) - t_i)^2 + \lambda \|w\|_2^2$$
- Note: May exclude constants from the norm

Regularization: Why?

- For polynomials, extreme curves typically require extreme values
- In general, encourages use of features only when they lead to a substantial increase in performance
- Problem: How to choose λ

A Bayesian Perspective

- Suppose we have a space of possible hypotheses H
- Which hypothesis has the highest posterior:
 $$P(H \mid D) = \frac{P(D \mid H) P(H)}{P(D)}$$
- $P(D)$ does not depend on H; maximize numerator
- Uniform $P(H)$ is called Maximum Likelihood solution (model for which data has highest prob.)
- $P(H)$ can be used for regularization

Maximum Likelihood

- For many models, the empirical mean is also the maximum likelihood solution
- Suppose:
 - Data normally distributed
 - Unknown mean, variance
 - IID samples
 $$P(D \mid H) = P(x^{(1)},...,x^{(n)} \mid \mu, \sigma)$$
 $$= \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x^{(i)} - \mu)^2}{2\sigma^2}}$$

Maximum Likelihood for Gaussians

- Sample mean is ML solution for mean
- Sample variance is ML solution for variance
 $$\mu_{\text{ML}} = \frac{\sum x^{(i)}}{n}$$
 $$\sigma_{\text{ML}} = \frac{\sum (x^{(i)} - \mu_{\text{ML}})^2}{n}$$
Priors for Gaussians

- Recall Bayes rule:
 \[P(H \mid D) = \frac{P(D \mid H)P(H)}{P(D)} \]
- Does it make sense to have a P(H) for Gaussians?
 - Yes: Corresponds to some prior knowledge about the mean or variance
 - Would like this knowledge to have a mathematically convenient form
 - We will see later that the Wishart distribution is a conjugate prior for the Gaussian distribution w/known mean

Maximum Likelihood Solution

\[P(D \mid H) = P(x(1) \ldots x(n) \mid y(x; w), \sigma) \]
\[= \prod_{i=1}^{n} \frac{e^{-\frac{(x(i) - \langle x(i), w \rangle)^2}{2\sigma^2}}}{\sqrt{2\pi\sigma^2}} \]
- ML fit for mean is just linear regression fit
- ML fit for mean does not depend upon \(\sigma \)

Bayesian Solution

- Introduce prior distribution over weights
 \[p(H) = p(w(0) = N(w(0) = 1) \]
- Posterior now becomes:
 \[P(D \mid H)p(H) = p(x(1) \ldots x(n) \mid y(x; w), \sigma)p(w) \]
 \[= \prod_{i=1}^{n} \frac{e^{-\frac{(x(i) - \langle x(i), w \rangle)^2}{2\sigma^2}}}{\sqrt{2\pi\sigma^2}} \cdot \frac{e^{-\frac{\|w\|^2}{2\alpha}}}{\frac{2\pi^{\frac{n+1}{2}}}{\alpha}} \]

Comparing Regularized Regression with Bayesian Regression

- Regularized Regression minimizes:
 \[J(\|w\|) + \sum_{i=1}^{n} (y(x; w) - z)_i^2 \]
- Bayesian Regression maximizes:
 \[\prod_{i=1}^{n} \frac{e^{-\frac{(x(i) - \langle x(i), w \rangle)^2}{2\sigma^2}}}{\sqrt{2\pi\sigma^2}} \cdot \frac{e^{-\frac{\|w\|^2}{2\alpha}}}{\frac{2\pi^{\frac{n+1}{2}}}{\alpha}} \]
- Observation: Take log of Bayesian regression criterion and these become identical (up to constants)

Regularization: An Empirical Approach

- Problem: We still have a magic constant that trades off complexity vs. fit
- Solution 1:
 - Generate multiple models
 - Use lots of test data to discover and discard bad models
- Solution 2 - S-fold cross validation:
 - Divide data into S groups
 - Create validation set i by subtracting group i from original set
 - Produces S groups of size (S-1)/S
 - Train on S-1, Test on held out set
 - Repeat, combine results in some way
Conclusions

• Many methods for choosing the best hypothesis – no single best w/o more information about the task
• Maximum likelihood and minimum squared error on training set are similar/same under some common assumptions
• Regularization prevents overfitting, is necessary when data are scarce