Least Squares Policy Iteration

Ronald Parr
CPS 271

Joint work with: Michail Lagoudakis

Overview

• Motivation

• LSPI
 – Derivation from LSTD
 – Experimental results

The RL Story

• MDPs, Decision theory tell us how to act optimally
• Beautiful theory – hard to use in practice
• Problem: Satisfying the Markov property means that there are usually way too many states
• Q: How can machine learning come to the rescue?

Need for Function Approximation

• MDPs
 – State space with \(|S|\) states
 – \(n\) state variables (fluents) imply \(|S|=2^n\)
 – Need to assign actions to all \(|S|\) states
 – Continuous state spaces are problematic
• Many MDP/RL algorithms use value functions
• How can we use our expertise in machine learning to extrapolate values for the entire state even if we have visited only a small fraction of it?

Example: TD-Gammon

• Used a neural network to represent value function
• Brilliant success for RL
 – Plays at level of best human players
 – Inspired a generation of RL researchers
• But...
 – Required hand crafted features
 – Required about 1 million games of experience
 – Hard to reproduce:
 • For other implementations
 • For other games

Standard RL Approaches

• Reinforcement often presented as stochastic gradient descent
• Agent observes \((s,a,r,s')\)
• Adjusts value function representation to make \(v(s)\) closer to \(r+\gamma v(s')\)
• Surprisingly, these approaches can diverge or oscillate when standard stochastic gradient does not
• We diverge from the standard view and present RL from a linear regression viewpoint
LSPI Teaser

- **LSPI is stable and efficient**
 - Never diverges or gives meaningless answers
 - Uses efficient linear algebra routines

- **LSPI reuses data**
 - Remembers past experiences
 - All past experiences relevant to all policies

Terminology

- S: state space
- s: individual states
- R: reward
- \(\gamma \): discount
- V: state value
- Q: state-action value
- Policy: \(\pi(s) \to a \)

Objective: *Maximize expected, discounted return*

\[
E \sum_{t=0}^{\infty} \gamma^t r_t
\]

Optimal Value Function, Policy

Optimal value function, policy satisfy Bellman equation:

\[
V^*(s) = \max_a R(s,a) + \gamma \sum_{s'} P(s'|s,a)V^*(s')
\]

\[
\pi^*(s) = \arg \max_a R(s,a) + \gamma \sum_{s'} P(s'|s,a)V^*(s')
\]

- If P,R are known, solve MDP:
 - VI, PI, LP
 - Poly time in number of states
- Otherwise, we use RL

Implementing VFA

- Can’t represent Value Function as a big vector
- Use (parametric) function approximator
 - Neural network
 - Linear regression (least squares)
 - Nearest neighbor (with interpolation)
- (Typically) sample a subset of the states
- Use function approximation to “generalize”

Approximate Solutions

- The standard Bellman equation:
 \[
 V^*(s) = \max_a R(s,a) + \gamma \sum_{s'} P(s'|s,a)V^*(s')
 \]

- “Fixed Point” Bellman Equation With approximation
 \[
 \hat{V}^*(s) = \Pi(\max_a R(s,a) + \gamma \sum_{s'} P(s'|s,a)\hat{V}^*(s'))
 \]

- \(\Pi \) is a projection operator
 - Projects into space of representable value functions
 - Often implicit

Problem 1: Stability

- Exact value iteration, Q-learning stability ensured by contraction of:
 \[
 V^{*+1}(s) = \max_a R(s,a) + \gamma \sum_{s'} P(s'|s,a)V^*(s')
 \]

- Is this a contraction:
 \[
 \hat{V}^{*+1}(s) = \Pi(\max_a R(s,a) + \gamma \sum_{s'} P(s'|s,a)\hat{V}^*(s'))
 \]
Stability Problem

Problem: Most VFA methods are unstable

No rewards, $\gamma = 0.9$: $V^* = 0$

Example from Bertsekas & Tsitsiklis 1996

Least Squares Approximation

Restrict V to linear functions:

Find θ s.t. $V(s_1) = \theta$, $V(s_2) = 2\theta$

Counterintuitive Result: If we do a least squares fit of θ

Unbounded Growth of V

Understanding the Problem

• What went wrong?
 – VI reduces error in maximum norm
 – Least squares (= projection) non-expansive in L_2
 – May increase maximum norm distance
 – Grows max norm error at faster rate than VI

• Conclusion: Alternating value iteration and regression is risky business

Problem 2: Efficiency

• Most RL methods can be viewed as stochastic gradient descent of some kind
 • Q-learning:
 \[Q^{i+1}(s, a) = (1 - \alpha) Q^i(s, a) + \alpha [r + \gamma V'(s', a)] \]
 \[V'(s', a) = \max_a Q'(s, a) \]

• Convergence requires:
 – Small steps (small α)
 – Visiting every state infinitely often

Overview

• Motivation
 • LSPI
 – Derivation from LSTD
 – Experimental results
How does LSPI fix these?

- LSPI is based on LSTD
- Policy evaluation alg. by Bratdke & Barto 96
- Stability:
 - LSTD directly solves for the fixed point of the approximate Bellman equation
 - With SVD, this is always well defined
- Data efficiency
 - LSTD finds best solution for any finite data set
 - Makes a single pass over the data for each policy
 - Can be implemented incrementally

OK, What’s LSTD?

- Least Squares Temporal Difference Learning
- Linear value function approximation
 \[\hat{V}(s) = \sum w_k \phi_k(s) \]
- NOT necessarily linear in state variables
- Each \(\phi_k \) can be an arbitrary function
- Compare with neural nets

Deriving LSTD

\[\hat{V} = \Phi w \]

assigns a value to every state

\[\phi = (\phi_1, \phi_2, \ldots, \phi_k) \]

\(\hat{V} \) is a linear function in the column space of \(\phi_1, \ldots, \phi_k \)

Suppose we know \(V^* \)

- Want:
 \[\Phi w \approx V^* \]
- Projection minimizes squared error
 \[w = (\Phi^T \Phi)^{-1} \Phi^T V^* \]
- Textbook least squares projection

But we don’t know \(V^* \)...

- Require consistency:
 \[\hat{V}^* = \prod (R + \gamma P \hat{V}^*) \]
- Substituting least squares projection
 \[\Phi w = \Phi (\Phi^T \Phi)^{-1} \Phi^T (R + \gamma P \Phi w) \]
- Solving for \(w \)
 \[w = (\Phi^T \Phi - \Phi^T P \Phi)^{-1} \Phi^T R \]

Almost there...

- Matrix to invert is only k x k
- But...
 - Expensive to construct matrix
 - We don’t know \(P \)
 - We don’t know \(R \)
Using Samples for Φ

Idea: Replace enumeration of states with sampled states

$\Phi = \{ \phi_1, \phi_2, \ldots \}$

Using Samples for $P\Phi$

Idea: Replace expectation over next states with sampled next states.

$P\Phi = \{ \phi_1', \phi_2', \ldots \}$

Putting it Together

- LSTD needs to compute:

 $w = (\Phi^T \Phi - \Phi^T P \Phi)^{-1} \Phi^T R$

- The hard part of which is the $k \times k$ matrix:

 $B = \Phi^T \Phi - \Phi^T P \Phi$

- This can be done incrementally, for each (s,a,r,s') sample:

 $B_{ij} \leftarrow B_{ij} + \phi_i(s) \phi_j(s') + \phi_i(s) \phi_j(s')$

LSTD Summary

- Does $O(k^2)$ work per datum
- Approaches model-based answer in limit
- Finding fixed point requires inverting matrix
- Fixed point almost always exists
- Can use SVM if B is singular
- Stable; efficient

Policy Iteration with LSTD

- No way to pick actions

 Approximation is biased by current policy

 - We only approximate values of states we see

 - LSTD is a weighted approximation

 Learn-forget cycle of policy iteration

 - Drive off the road; learn that it’s bad

 - New policy never does this; forgets that it’s bad

What Breaks?
LSPI

- LSPI makes LSTD suitable for Policy Iteration
- LSTD: state -> state
- LSPI: (state, action) -> (state, action)
- Similar to Q learning
- Implementation is subtle
- Has deep consequences:
 - Disconnects policy evaluation from data collection
 - Permits reuse of data across iterations

Implementing LSPI

- Both LSTD and LSPI must compute:
 \[B = \Phi^T \Phi \]
- But LSPI has a factor of (#A) more basis fns
- Duplicate basis functions for each action:
 - \(\phi_{i1}(s) \) if \(a_1 \) taken, 0 otherwise,
 - \(\phi_{i2}(s) \) if \(a_2 \) taken, 0 otherwise,
- For each \((s,a,r,s') \) sample:
 \[B_{ij} \leftarrow B_{ij} + \phi_i^a(s)\phi_j^a(s) - \phi_i^a(s)\phi_j^{\pi(s)}(s') \]

Running LSPI

- Start w/ random weights (= random policy)
- Collect a database of \((s,a,r,s') \) experiences
- Repeat
 - Evaluate current policy against database
 - Run LSPI to generate new set of weights
 - New weights imply new policy
 - Replace current weights with new weights
- Until convergence (or e weight change)

Results: Bicycle Riding

- Randlov and Alstrom simulator
- Watch random controller operate bike
- Collect \~40,000 \((s,a,r,s') \) samples
- Pick 20 simple basis functions \(\times \) 5 actions
- Make 5-10 passes over data (PI steps)
- Result:
 Controller that balances and rides to goal

Bicycle Trajectories

Q-learning Results
So, what’s the bad news?

- \((k \#A)^2\) can sometimes be big
 - Lots of storage
 - Matrix inversion can be expensive
- Linear VFA is “weak”
- Bicycle needed “shaping” rewards
- Still haven’t solved
 - Feature selection (issue for all machine learning, but RL seems even more sensitive)
 - Exploration vs. Exploitation

Conclusion

- Reinforcement learning combines decision theory with machine learning techniques
- Key idea: Avoid covering the large state space imposed by adherence to Markov property
- Key challenges:
 - Stability
 - Non-linearity introduced by max in Bellman equation
 - Feature/model selection
 - Exploration vs. Exploitation
- Many methods exist for RL
- LSTD/LSPI represent one family of methods closely tied to linear regression