Clustering and EM

Ron Parr
CPS 271

material from: Lise Getoor, Andrew Moore, Tom Dietterich, Sebastian Thrun, Rich Maclin

Unsupervised Learning

• Supervised learning: Data <x, y>
• Unsupervised Learning: Data x

• So, what’s the big deal?
• Isn’t y just another feature?
• No explicit performance objective
 – Bad news: Problem not necessarily well defined without further assumptions
 – Good news: Results can be useful for more than predicting y
Model Learning

- Produce a global summary of the data
- Not an exact copy
- Assume data are sampled from a larger set that has some easily summarized properties
 - cluster analysis
 - density estimation

- In this lecture: We focus on clustering and use clustering to motivate the EM algorithm

Cluster Analysis

- Decomposition or partition of data into groups where
 - the points in one group are similar to each other
 - and are as different as possible from the points in other groups
Examples of Clustering Applications

- **Marketing**: Help marketers discover distinct groups in their customer bases, and then use this knowledge to develop targeted marketing programs.
- **Land use**: Identification of areas of similar land use in an earth observation database.
- **Insurance**: Identifying groups of motor insurance policy holders with similar claim cost.
- **City-planning**: Identifying groups of houses according to their house type, value, and geographical location.
- **Earth-quake studies**: Observed earth quake epicenters should be clustered along continent faults.

Example

- **Households**: location, income, number of children, rent/own, crime rate, number of cars.

- Appropriate clustering may depend on use:
 - minimize delivery time ⇒ cluster by location
 - others?
 - (Suggests problem is ill defined)
Clustering

• Decomposition or partition of data into groups so that
 – the points in one group are similar to each other
 – and are as different as possible from the points in other groups
• Measure of distance is fundamental
• Explicit representation:
 – $D(x(i), x(j))$ for each x
 – only feasible for small domains
• Measurement:
 – distance computed from features
 – we’ve already seen a number of different ways of doing this

Clustering

• Huge body of work
• (aka unsupervised learning, segmentation, …)
• Major difficulty: Measuring success
• Evaluation depends on goals
• If goal is to find ‘interesting’ clusters, this is rather difficult to quantify
• However, for our probabilistic methods, we will present some tools for validating our models
Families of Clustering Algorithms

• **Partition-based methods**
 – e.g., K-means
• **Hierarchical clustering**
 – e.g., hierarchical agglomerative clustering
• **Probabilistic model-based clustering**
 – e.g., mixture models
• **Graph-based Methods**
 – e.g., spectral methods

Partition-based Clustering Algorithms

• Given set of n data points \(D=\{x^{(1)}, ..., x^{(n)}\}\)
 partition data into k clusters \(C = \{C_1, ..., C_k\}\)
 such that each \(x(i)\) is assigned to a unique \(C_j\)
 and \(\text{Score}(C,D)\) is minimized/maximized
• Combinatorial optimization: searching for allocation of n
 objects into k classes that maximizes score function
• Number of possible allocations = \(k^n\)
• Exhaustive search is intractable
• Resort to iterative improvement
Possible Scoring Functions

- **Score function:**
 - clusters compact \Rightarrow minimize within cluster distance, $wc(C)$
 - clusters should be far apart \Rightarrow maximize distance between clusters, $bc(C)$
- Given a clustering C, assign cluster centers, c_k
 - if points belong to space where means make sense, we can use the centroid of the points in the cluster:
 \[c_k = \frac{1}{n_k} \sum_{x \in C_k} x \]
- $wc(C) =$ sum-of-squares within cluster distance
 \[wc(C) = \sum_{k=1}^{K} wc(C_k) = \sum_{k=1}^{K} \sum_{x \in C_k} d(x, c_k) \]
- $bc(C) =$ distance between clusters
 \[bc(C) = \sum_{1 \leq j < k \leq K} d(c_j, c_k) \]
- Score(C, D) = $f(wc(C), bc(C))$

K-means

- Start with randomly chosen cluster centers
- Assign points to closest cluster
- Recompute cluster centers
- Reassign points
- Repeat until no changes
K-means example

X(1) X(2) X(3)

X(4) X(5) X(6)

X(7) X(8)

K-means example

X(1) X(2) X(3)

X(4) X(5) X(6)

X(7) X(8)

C_1

C_2

C_3
K-means example
K-means example

X(1) X(2) X(3) X(4) X(5) X(6) X(7) X(8)

C1 C2 C3
K-means example #2

Complexity

- Does algorithm terminate?
- Does algorithm converge to optimal?
- Time complexity one iteration? nk
Understanding k-Means

- Models data as coming from spherical Gaussians centered at cluster centers
- \(\log P(\text{data}) \sim \text{sum of squared distances} \)
- Each step of k-Means increases \(\log P(\text{data}) \)
 - Reassigning
 - Recomputing means

- Fixed number of assignments and monotonic score implies convergence
- (We will later learn that this is an example of EM)

Algorithm Variations

- Recompute centroid as soon as a point is reassigned
- Allow merge and split of clusters
- Cases where means do not make sense
 - \(k \)-mediods – use one of the data points as center
 - Categorical data
- What if data set is too large for algorithm to be tractable?
 - Compress data by replacing groups of objects by ‘condensed representation’
Probabilistic Model-based Clustering

- Assume probability model for each component cluster
- Mixture Model:
 \[p(x) = \sum_{k=1}^{K} w_k f_k(x; \theta_k) \]
 - where \(f_k \) are component distributions
 - Components: gaussian, poisson, exponential, etc.
 - Most common: Gaussian mixture model (GMM)

Gaussian Mixture Models (GMM)
- \(K \) components
- Model for each component cluster \(f = N(\mu_k, \sigma_k) \)

\[
p(x) = \sum_{k=1}^{K} w_k f(x; \mu_k, \sigma_k)
\]
GMM cont.

- Generative Model
 - choose component with probability w_k
 - generate $X \sim N(\mu_k, \sigma_k)$

\[
p(x) = \sum_{k=1}^{K} p(z_k)p(x | z_k; \mu_k, \sigma_k)
\]

\[
p(x) = \sum_{i=1}^{m} \sum_{k=1}^{K} p(z_k^{(i)}) p(x^{(i)} | z_k^{(i)}; \mu_k, \sigma_k)
\]

- Problem:
 - Non-linear system of equations
 - No efficient analytic solution
 - One solution: gradient descent.... Slow, method of last resort
 - Instead....
Silly Example

Let events be "grades in a class"

- \(w_1 = \) Gets an A \(\quad \) \(\text{P}(A) = \frac{1}{2} \)
- \(w_2 = \) Gets a B \(\quad \) \(\text{P}(B) = \mu \)
- \(w_3 = \) Gets a C \(\quad \) \(\text{P}(C) = 2\mu \)
- \(w_4 = \) Gets a D \(\quad \) \(\text{P}(D) = \frac{1}{2} - 3\mu \)

(Note \(0 \leq \mu \leq 1/6 \))

Assume we want to estimate \(\mu \) from data. In a given class there were

- a A's
- b B's
- c C's
- d D's

What's the maximum likelihood estimate of \(\mu \) given a,b,c,d ?

Trivial Statistics

\(\text{P}(A) = \frac{1}{2} \quad \text{P}(B) = \mu \quad \text{P}(C) = 2\mu \quad \text{P}(D) = \frac{1}{2} - 3\mu \)

\(\text{P}(a,b,c,d \mid \mu) = K(\frac{1}{2})^a(\mu)^b(2\mu)^c(\frac{1}{2} - 3\mu)^d \)

\(\log P(a,b,c,d \mid \mu) = \log K + a \log \frac{1}{2} + b \log \mu + c \log 2\mu + d \log (\frac{1}{2} - 3\mu) \)

For MLE \(\mu \), set \(\frac{\partial \log P}{\partial \mu} = 0 \)

\[\frac{\partial \log P}{\partial \mu} = \frac{b}{\mu} + \frac{2c}{2\mu} - \frac{3d}{1/2 - 3\mu} = 0 \]

\[\mu = \frac{b + c}{6(b + c + d)} \]

So if class got

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>14</td>
<td></td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

MLE \(\mu = \frac{1}{10} \)
Same Problem with Hidden Information

Someone tells us that
Number of High grades (A’s + B’s) = \(h \)
Number of C’s = \(c \)
Number of D’s = \(d \)

What is the max. like estimate of \(\mu \) now?

<table>
<thead>
<tr>
<th>REMEMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P(A) = \frac{1}{2})</td>
</tr>
<tr>
<td>(P(B) = \mu)</td>
</tr>
<tr>
<td>(P(C) = 2\mu)</td>
</tr>
<tr>
<td>(P(D) = \frac{1}{2} - 3\mu)</td>
</tr>
</tbody>
</table>

We can answer this question circularly:

EXPECTATION
If we know the value of \(\mu \) we could compute the expected value of \(a \) and \(b \).

Since the ratio \(a:b \) should be the same as the ratio \(\frac{1}{2} : \mu \)

\[
a = \frac{\frac{1}{2}}{1 + \mu} h \\
b = \frac{\mu}{1 + \mu} h
\]

MAXIMIZATION
If we know the expected values of \(a \) and \(b \) we could compute the maximum likelihood value of \(\mu \)

\[
\mu = \frac{b + c}{6(b + c + d)}
\]
E.M. for our Trivial Problem

We begin with a guess for \(\mu \)
We iterate between EXPECTATION and MAXIMALIZATION to improve our estimates of \(\mu \) and \(a \) and \(b \).

Define \(\mu(t) \) the estimate of \(\mu \) on the \(t \)th iteration
\(b(t) \) the estimate of \(b \) on \(t \)th iteration

\[
\mu(0) = \text{initial guess} \\
b(t) = \frac{b(t) + \mu(t)}{2 + \mu(t)} = E[b | \mu(t)] \\
\mu(t + 1) = \frac{b(t) + c}{6(b(t) + c + d)} \\
= \text{max like est of } \mu \text{ given } b(t)
\]

Continue iterating until converged.
Good news: Converging to local optimum is assured.
Bad news: "local" optimum.

E.M. Convergence

- Convergence proof based on fact that \(\text{Prob(data | } \mu) \) must increase or remain same between each iteration NOT OBVIOUS
- But it can never exceed 1 previous
- So it must therefore converge previous

\[
\begin{array}{c|c|c}
 \text{t} & \mu(t) & b(t) \\
 \hline
 0 & 0 & 0 \\
 1 & 0.0833 & 2.857 \\
 2 & 0.0937 & 3.158 \\
 3 & 0.0947 & 3.185 \\
 4 & 0.0948 & 3.187 \\
 5 & 0.0948 & 3.187 \\
 6 & 0.0948 & 3.187 \\
\end{array}
\]

In our example, suppose we had
\(h = 20 \)
\(c = 10 \)
\(d = 10 \)
\(\mu(0) = 0 \)

Convergence is generally linear; error decreases by a constant factor each time step.
Gaussian Mixture Example: Start

After first iteration
After 2nd iteration

After 3rd iteration
After 4th iteration

After 5th iteration
After 6th iteration

After 20th iteration
Formal EM setup

- Let $D = \{x(1), \ldots, x(n)\}$ be n observed data vectors
- Let $Z = \{z(1), \ldots, z(n)\}$ be n values of hidden variable (these might be the cluster labels)
- Then the log-likelihood of the observed data is
 \[
 l(\theta) = \log p(D | \theta) = \log \sum p(D, Z | \theta)
 \]
- both θ and Z are unknown
- Let $Q(Z)$ be any probability distribution for Z.
 \[
 l(\theta) = \log \sum p(D, Z | \theta) = \log \sum Q(Z) \frac{p(D, Z | \theta)}{Q(Z)} \geq \sum Q(Z) \log \frac{p(D, Z | \theta)}{Q(Z)} = \sum Q(Z) \log p(D, Z | \theta) + \sum Q(Z) \log \frac{1}{Q(Z)} = F(Q, \theta)
 \]

Digression: Jensen’s Inequality

- For convex $f(x)$, density $p(x)$:
 \[
 f \left(\int x p(x) \, dx \right) \leq \int f(x) p(x) \, dx
 \]
- Reversed for concave $f(x)$:
 \[
 f \left(\int x p(x) \, dx \right) \geq \int f(x) p(x) \, dx
 \]
EM Algorithm

- EM algorithm alternates between
 - maximize F with respect to dist. Q with θ fixed
 - maximize F with respect to θ with $Q = p(Z)$ fixed

E-step: $Q^{k+1} = \arg \max \limits_{Q} F(Q^k, \theta^k)$

M-step: $\theta^{k+1} = \arg \max \limits_{\theta} F(Q^{k+1}, \theta)$

Intuition:
- In the E-step, we estimate the distribution on the hidden variables, conditioned on a particular setting of the parameter vector θ^k
- In the M-step, we choose new set of parameters θ^{k+1} to maximize the expected log-likelihood of observed data

Notes

- Often both E, M steps can be solved in closed form
- Neither E nor M can decrease the log-likelihood
- Convergence guaranteed since $F(Q, \theta)$ nondecreasing
- May converge to local optimum
- Optimum may depend upon initial choice of θ, Q
- Must specify stopping criterion

- Computational complexity depends upon:
 - Number of iterations
 - Time to compute E and M steps
EM Comments

- Complexity of EM for multivariate Gaussian mixtures with K components: dominated by calculation of K covariance matrices.
 - p dimensions: $O(Kp^2)$ parameters to be estimated
 - Each requires summing over n data points and cluster weights, leading to $O(Kp^2n)$ per step

- Often times there are large increases in likelihood over first few iteration and then can slowly converge; likelihood as function of iterations not necessarily concave

and finally...

how do we choose K?
How to choose K

• Choose K that maximizes likelihood?
• No!!!
• As K is increased, the value of the likelihood at maximum cannot decrease
• Problem of scoring models with different complexities
 – Model too flexible ⇒ overfit the data ⇒ high variance
 – Model too restrictive ⇒ can’t fit the data ⇒ high bias
 – Bias-variance tradeoff: compromise
• Solutions:
 – External validation (use k-fold cross validation, LOOCV)
 – Scoring function – MDL, BIC, AIC (complexity penalties)
 – Bayesian model selection

Relationship to K-Means

• Can view K-Means as a special case of EM for GMMs
• Assumes uniform, spherical covariance matrices
• Only hidden parameters are mixture memberships
• Makes “hard” assignments to clusters
 (all probabilities assumed to be 0/1)

• Can show that hard EM converges under similar (minimal) assumptions to those needed for soft EM
Conclusion

- Clustering can be viewed as a problem of inferring hidden parameters of data + model parameters

- EM = powerful and general method for doing this
- Note that EM has applications beyond clustering (can be used any time we need to estimate hidden variables)