Regression

CPS 271
Ron Parr

Supervised Learning

• Given: Training Set
• Goal: Good performance on test set
• Assumptions:
 – Training samples are independently drawn, and identically distributed (IID)
 – Test set is from same distribution as training set
Fitting Continuous Data
(Regression)

- Datum i has feature vector: \(\phi = (\phi_1(x^{(i)}) \ldots \phi_k(x^{(i)})) \)
- Has real valued target: \(t^{(i)} \)
- Concept space: linear combinations of features:
 \[y(x^{(i)}; w) = \sum_{j=1}^{k} \phi_j(x^{(i)})w_j = \phi(x^{(i)})w = \phi^{(i)}w \]
- Learning objective: Search to find “best” \(w \)
- (This is standard “data fitting” that most people learn in some form or another.)

Linearity of Regression

- Regression typically considered a *linear* method, but...
- Features not necessarily linear
 - and, BTW, features not necessarily linear
Regression Examples

- Predicting housing price from:
 - House size, lot size, rooms, neighborhood*, etc.
- Predicting weight from:
 - Sex, height, ethnicity, etc.
- Predicting life expectancy increase from:
 - Medication, disease state, etc.
- Predicting crop yield from:
 - Precipitation, fertilizer, temperature, etc.
- Fitting polynomials
 - Features are monomials

Features/Basis Functions

- Polynomials
- Indicators
- Gaussian densities
- Step functions or sigmoids
- Sinusoids (Fourier basis)
- Wavelets
- Anything you can imagine...
What is “best”?

- No obvious answer to this question
- Three compatible answers:
 - Minimize squared error on training set
 - Maximize likelihood of the data
 (under certain assumptions)
 - Project data into “closest” approximation
- Other answers possible

Degree 0 Fit
Degree 1 Fit

Degree 3 Fit
Degree 9 Fit

Minimizing Squared Training Set Error

• Why is this good?

• How could this be bad?

• Minimize:

\[E(w) = \sum_{i=1}^{N} (\phi(x^{(i)})w - t^{(i)})^2 \]
Maximizing Likelihood of Data

• Assume:
 – True model is in H
 – Data have Gaussian noise

• Actually might want:

$$\arg\max_H P(H | X) = \frac{P(X | H)P(H)}{P(X)}$$

• Is maximizing $P(X | H)$ a good surrogate?
 (maximizing over w)

Maximizing $P(X | H)$

• Assume: $t^{(i)} = y^{(i)} + \varepsilon^{(i)}$

• Where: $P(\varepsilon^{(i)}) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{(\varepsilon^{(i)})^2}{2\sigma^2}\right)$
 (Gaussian distribution w/mean 0, standard deviation σ)

• Therefore:

$$P(t^{(i)} | x^{(i)}, w) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{(t^{(i)} - \phi(x^{(i)})w)^2}{2\sigma^2}\right)$$
Maximization Continued

- Maximizing over entire data set:
 \[\prod_{i=1}^{n} p(t^{(i)} | \phi^{(i)}, \theta) = \prod_{i=1}^{n} \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{(t^{(i)} - \phi^{(i)})^2}{2\sigma^2} \right) \]

- Maximizing equivalent log formulation:
 (ignoring constants)
 \[\sum_{i=1}^{n} -(t^{(i)} - \phi^{(i)}w)^2 \]

- Or minimizing:
 \[E = \sum_{i=1}^{n} (t^{(i)} - \phi^{(i)}w)^2 \]
 Look familiar?

Checkpoint

- So far we have considered:
 - Minimizing squared error on training set
 - Maximizing Likelihood of training set
 (given model, and some assumptions)

- Different approaches w/same objective!
Solving the Optimization Problem

- *Nota bene:* Good to keep optimization problem and optimization technique separate in your mind

- Some optimization approaches:
 - Gradient descent
 - Direct Minimization

Minimizing E by Gradient Descent

Start with initial weight vector \mathbf{w}_0.

Compute the gradient

$$\nabla E = \left(\frac{\partial E[\mathbf{w}]}{\partial w_1}, \ldots, \frac{\partial E[\mathbf{w}]}{\partial w_n} \right)$$

Compute

$$\mathbf{w} \leftarrow \mathbf{w} - \alpha \nabla E$$

where α is the step size.

Repeat until convergence.

(Adapted from Lise Getoor’s Slides)
Gradient Descent Issues

• For this particular problem:
 – Global minimum exists
 – Convergence “guaranteed” if done in “batch”

• In general
 – Local optimum only (local=global for lin. regression)
 – Batch mode more stable
 – Incremental possible
 • Can oscillate
 • Use decreasing step size (Robbins-Monro) to stabilize

Solving the Minimization Directly

\[
E = \sum_{i=1}^{n} (t^{(i)} - \phi^{(i)}w)^2
\]

\[
\nabla_w E \propto \sum_{i=1}^{n} (t^{(i)} - \phi^{(i)}w) \phi^{(i)}
\]

Set gradient to 0 to find min:

\[
\sum_{i=1}^{n} (t^{(i)} - \phi^{(i)}w) \phi^{(i)} = 0
\]

\[
\sum_{i=1}^{n} \phi^{(i)}(t^{(i)} - \phi^{(i)}w) = 0
\]

\[
\Phi^T t - w^T \Phi \Phi = \Phi^T t - \Phi \Phi w = 0
\]

\[
w = (\Phi^T \Phi)^{-1} \Phi^T t
\]

\[
\Phi = \begin{bmatrix}
\phi(x^{(1)}) \\
\phi(x^{(2)}) \\
\vdots \\
\phi(x^{(n)})
\end{bmatrix}
\]
Geometric Interpretation

- $\mathbf{t} = (t^{(1)} \ldots t^{(n)}) = \text{point in n-space}$
- Ranging over \mathbf{w}, $\Phi \mathbf{w} = H =$
 - column space of features
 - subspace of \mathbb{R}^n occupied by H
- Goal: Find “closest” point in H to \mathbf{t}

- Suppose closeness = Euclidean distance

Another Geometric Interpretation

- H space (linear combinations of Φ)
- (Euclidean distance minimized by orthogonal projection)
Minimizing Euclidean Distance

- Minimize: $|t - \Phi w|_2$
- For n data points:
 $$\sqrt{\sum_{i=1}^{n} (t^{(i)} - \phi^{(i)} w)^2}$$
- Equivalent to minimizing:
 $$\sum_{i=1}^{n} (t^{(i)} - \phi^{(i)} w)^2$$
 Look familiar?

Checkpoint

- Three different ways to pick w in H
 - Minimize squared error on training set
 - Maximize likelihood of training set
 - Distance minimizing projection into H

- All lead to same optimization problem!
 $$\arg\min_w E(w) = \sum_{i=1}^{N} (\phi^{(i)} w - t^{(i)})^2$$
Geometric Solution

- Geometric Approach (Strang)
- Let Φ be the feature (design) matrix
- Require orthogonality:

$$\forall z : (\Phi z)^T (\Phi w - t) = 0$$

Any vector in H

$$\forall z : z^T [\Phi^T \Phi w - \Phi^T t] = 0$$

Line from t to solution

Direct Solution Continued

- When is this true: $\forall z : z^T [\Phi^T \Phi w - \Phi^T t] = 0$
- When:

$$\Phi^T \Phi w - \Phi^T t = 0$$

$$w = (\Phi^T \Phi)^{-1} \Phi^T t$$

Same solution as direct minimization of error

When does the inverse exist?
What if \(t^{(i)} \) is a vector?

• Nothing changes!
• Scalar prediction:

\[
w = (\Phi^T \Phi)^{-1} \Phi^T t
\]

• Vector prediction (exercise):

\[
W = (\Phi^T \Phi)^{-1} \Phi^T T
\]

Checkpoint

• What we have shown:
 – Three different ways of viewing regression as an optimization problem
 – All three lead to the same solution

• What we have not shown
 – How to pick features
 – Whether these views are the “right” objective function
What about other criteria?

• Minimizing worse case (L_∞) loss?

$$\min_w \max_i \left(\phi^{(i)} w - t^{(i)} \right)$$

• Solve by linear program...

Minimizing Max Error

• Constraints: $\forall i$:
 $$\epsilon > \phi^{(i)} w - t^{(i)}$$
 $$\epsilon > t^{(i)} - \phi^{(i)} w$$

• Objective: Minimize ϵ

• Don’t use for noisy data!
What is the Best Choice of Features?

Noisy Source Data

Degree 0 Fit

$M = 0$
Degree 1 Fit

Degree 3 Fit
Degree 9 Fit

Observations

- Degree 3 is the best match to the source
- Degree 9 is the best match to the samples
- Performance on test data:
Understanding Loss

- Suppose we have a squared error loss function: L (gets too confusing to use E)
- Define $h(x) = E[t|x]$

$$E[L] = \int \{y(x) - h(x)\}^2 p(x) dx + \int \{h(x) - t\}^2 p(x, t) dx dt$$

Mismatch between hypothesis and target – we can influence this
Noise in distribution of targets (nothing we can do)

Bias and Variance

$$E[L] = \int \{y(x) - h(x)\}^2 p(x) dx + \int \{h(x) - t\}^2 p(x, t) dx dt$$

Since $y(x)$ is fit to data, consider expectation over different draws of a fixed size data set for the part we control

$$E_D \left[\{y(x; D) - h(x)\}^2 \right] = \{E_D [y(x; D) - h(x)]\}^2 + E_D \left[\{y(x; D) - E_D [y(x; D)]\}^2 \right]$$

bias variance
Understanding Bias

\[\{E_D[y(x;D) - h(x)]\}^2 \]

- Measures how well our approximation architecture can fit the data
- Weak approximators (e.g. low degree polynomials) will have high bias
- Strong approximators (e.g. high degree polynomials, will have lower bias)

Understanding Variance

\[E_D[\{y(x;D) - E_D[y(x;D)]\}^2] \]

- No direct dependence on target values
- For a fixed size D:
 - Strong approximators will tend to have more variance
 - Weak approximators will tend to have less variance
- Variance will typically disappear as size of D goes to infinity
Example: 20 points

\[y = x + 2 \sin(1.5x) + N(0,0.2) \]

Hypothesis space = linear in \(x \)

50 fits (20 examples each)

What are we seeing here?
Degree 9 Fit Revisited

Trade off Between Bias and Variance

- Is the problem a bad choice of polynomial?
- Is the problem that we don’t have enough data?
- Answer: Yes
- Lower bias -> Higher Variance
- Higher bias -> Lower Variance
Bias and Variance: Lessons Learned

- When data are scarce relative to the “capacity” of our hypothesis space
 - Variance can be a problem
 - Restricting hypothesis space can reduce variance at cost of increased bias
- When data are plentiful
 - Variance is less of a concern
 - May afford to use richer hypothesis space

Concluding Comments

- Regression is the most basic machine learning algorithm
- Multiple views are all equivalent:
 - Minimize squared loss
 - Maximize likelihood
 - Orthogonal projection
- Big question: Choosing features
- First steps towards understanding this: *Bias and variance trade off*