1. The Matlab function `linesearch.m` provided on the class web page with this assignment has the following header:

   ```matlab
   function x = linesearch(Grad, x0, p)
   ```

This function takes three arguments:

- The name `Grad` of a function with header
  ```matlab
  function g = Grad(x)
  ```
 that evaluates the gradient of a function \(f(x) \) at \(x \).
- A starting point \(x_0 \) for line search.
- A search direction \(p \) that need not be normalized to unit length.

The idea is that if you want to minimize a function \(f(x) \) with some method that requires knowing the gradient \(g(x) \) of \(f(x) \), then you just provide a routine to compute \(g(x) \). The function `linesearch` is different from what we saw in class: instead of finding a minimum of \(f(x) \), it finds a zero of \(g(x) \) after checking that \(g(x_0)^T p \) is indeed negative. This is why the version of line search given above does not take \(f \) itself as argument. In fact, \(f(x) \) itself is never needed for this homework. All you need is its gradient.

(a) Write a Matlab function that converges towards the minimum of a function \(f(x) \) by steepest descent. Your function should have the following header:

   ```matlab
   function [x,allx] = steepest(Grad,x,maxits,deltax)
   ```

 where

 - `Grad` is the name of a function that computes the gradient of \(f(x) \), as discussed above.
 - The input argument \(x \) is a starting point.
 - `maxits` is the maximum number of iterations for steepest descent.
 - `deltax` is a termination bound: your function will stop either after `maxits` iterations, or when the last step \(x_k - x_{k-1} \) was shorter than `deltax`, whichever comes first.
 - The output argument \(x \) contains the solution point.
 - The output `allx` contains all the steps \(x_k \) that `steepest` took to reach the minimum. This is useful to see what your minimization function does.

 Hint: when `steepest` needs to evaluate `Grad` at \(x \), it calls a Matlab function called `feval` as follows: \(g = feval(Grad, x) \).

(b) The function

 \[
 f(x) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2
 \]

 is known as Rosenbrock's function. It has a unique minimum at \(x^* = (1, 1)^T \). Write an expression for the gradient of this function.

(c) Write a Matlab function \(g = rosengrad(x) \) that computes the gradient \(g \) of Rosenbrock's function at \(x \). Turn in your code.

(d) Call `steepest` with `rosengrad` as follows:

   ```matlab
   [x,allx] = steepest(‘rosengrad’, [-1.2 1], 100, 1.0e-4); 
   ```

 and display your results. To do this, do
numsteps = size(allx,2)
drawrosenbrock(allx);

where the function drawrosenbrock is also supplied on the class web page. This plots the first 100 steps taken by your algorithm when it is started at $x_0 = (-1.2, 1.0)^T$. Show the resulting plot.

(e) Does your algorithm converge within 100 steps? If not, what is δ_{x} when it gives up?

(f) How far was the solution x from x^* upon termination?

(g) Arm yourself with patience. How many steps does it take for your steepest descent code to converge within the given δ_{x}?

(h) How far was the solution x from x^* upon termination?

(i) Write a Matlab function or script that minimizes a function by the conjugate gradients method. Your function should have the following header:

```
function [x, allx] = conjugate(Grad, x, maxits, deltax)
```

(j) Test your routine on Rosenbrock’s function by doing the following:

```
[x,allx] = conjugate(’rosengrad’, [-1.2 1], 100, 1.0e-4);
numsteps = size(allx,2)
drawrosenbrock(allx);
```

and show the resulting plot.

(k) Does your algorithm converge within 100 steps? If not, what is δ_{x} when it gives up?

(l) How far was the solution x from x^* upon termination?

(m) (No credit) Which local minimization method is preferable, steepest descent or conjugate gradients?