CAUSALITY IN DATABASES

By Meliou et al.
Database Causality – Preliminaries

- D – all tuples of a database
- D^n – endogenous tuples
 - Possible causes
- D^x – exogenous tuples
 - Deemed not to be possible causes
 - $D^x = D - D^n$

- Partition determined by the system or by the user
Database Causality – Definition

• \(q \) – a query
• \(r \) – a possible answer to \(q \)
• \(t \in D^n \) – an endogenous tuple

• \(t \) is called a COUNTERFACTUAL CAUSE for \(r \) in \(D \) if \(D \models q(r) \) and \(D - \{t\} \not\models q(r) \).

• \(t \in D \) is called an actual cause for \(r \) if there exists a set \(\Gamma \subseteq D^n \) such that \(t \) is a counterfactual cause for \(r \) in \(D - \Gamma \)
 • \(\Gamma \) is called a contingency for \(t \).
Database Causality – Intuition

- t is called a COUNTERFACTUAL CAUSE for r in D if $D \models q(r)$ and $D - \{t\} \not\models q(r)$.
 - Removal of t from D removes r from result of evaluating q on D

- $t \in D$ is called an actual cause for r if there exists a set $\Gamma \subseteq D^n$ such that t is a counterfactual cause for r in $D - \Gamma$
 - After removing Γ from the D, D is at the state where removing/inserting t causes r to switch between an answer and a non-answer
Degree of Responsibility

- Definition: responsibility of a cause t for an answer r to a query q is $\rho_t = \left(1 + \min_{\Gamma} |\Gamma|\right)^{-1}$

- A function of the minimal number of tuples need to be removed from D such that t becomes counterfactual (the switch).

- Between candidates A and B,
 - In a 6-5 vote, each vote for A is critical
 - Responsibility = 1
 - In a 11-0 vote, 5 votes have to be changed before one becomes critical
 - Responsibility = 1/6
Applications

• Explaining unexpected answers
• Diagnosing network failures
• Handling aggregate queries
• View-conditioned causality
• Preemption
• Why-not causality for non-answers
Explaining Unexpected Answers

- Looking for genres of films directed by Tim Burton
- Known for directing fantasy movies involving dark, Gothic themes
- E.g. “Edward Scissorhands”, “Beetlejuice”, “Alice in Wonderland”
Explaining Unexpected Answers

- Use responsibility to identify most “interesting” explanations
Diagnosing Network Failure

- Connected(x,y) :- Link(x,y), Active(x), Active(y)
 - x and y are connected, if they are physically linked and both of them are active

- Connected(x,y) :- Connected(x,z), Link(z,y), Active(y)
 - If x and z are connected (indicating z is active), and z and y are connected, then x and y are connected

- Connected(x,y) :- Connected(y,x)
 - Connectivity graph is undirected
Diagnosing Network Failure

- Suppose physical links do not break down
 - Tuples in Link deemed exogenous

- Only servers break down
 - Tuples in Active deemed endogenous

- Query: Connected(A,B)
 - Observed to be false, but reported by the database to be true
 - Each server on a simple path from A to B is an actual cause
 - Minimal contingency for a server C is a set of servers Γ such that $\Gamma \cup \{C\}$ is a minimal cut disconnecting A from B.
Handling Aggregate Queries

• **Query**: select `sum(A)` from `R`
 • Only tuples with `R.A ≠ 0` is counterfactual.

• **Query**: select ‘true’ from `R` having `sum(A) > 500`
 • Assuming an instance of `R.A`: `{450, 150, 75, 25}`.
 • \(\rho_{450} = 1, \rho_{150} = \rho_{75} = \frac{1}{2}, \rho_{25} = 0 \)
View-Conditioned Causality

- Additional information: queries v_1, v_2, \ldots, v_k, and their answers b_1, b_2, \ldots, b_k

- What are the most probable causes of unexpected answer r to query q,
- while answers b_1, b_2, \ldots, b_k to queries v_1, v_2, \ldots, v_k are normal expected.
Preemption

• If Alice and Bob both throw a rock at a bottle, and Alice throws first, then her throw would be cause of the bottle breaking, not Bob’s.
• But CAUSALITY treats “Alice’s throw” and “Bob’s throw” symmetrically.

• Not really captured by this CAUSALITY definition…

• But handled by the full HP definition
Why-not Causality for non-answers

• t is called a COUNTERFACTUAL CAUSE for the non-answer r in D^x if $D^x \not\models q(r)$ and $D^x \cup \{t\} \models q(r)$.

• $t \in D$ is called an actual cause for the non-answer r if there exists a set $\Gamma \subseteq D^n$ such that t is a counterfactual cause for the non-answer r in $D^x \cup \Gamma$.
Discussion

• Limitation of CAUSALITY
 • Only works for monotone queries
 • For non-monotone queries, such as ranked based queries (top-k), should refer to the full HP definition

• Applicability to class projects