Topic Models

Goal: uncover thematic structure
Approach: Bayesian, probabilistic model.

- Probabilistic Model
 - Def. (informal) A prob. model is a class of distributions
 \(D(\theta) \) (\(\theta \in \Theta \)), \(\Theta \) is called the parameter.
 \(D(\theta) \) is a distribution.

- Def. Parameter estimation: Given samples from \(D(\theta) \),
 estimate \(\theta \).

- Example: Gaussian distribution \(\mathcal{N}(\mu, \sigma^2) \)

 - Parameter estimation: easy \((\text{sample mean})\)

 Note: cannot get exact \(\mu \) only hope for \(\frac{1}{\sqrt{\text{#samples}}} \)

- Topic models
 - Plan: Define a topic model \((\text{hard!})\)
 \((\text{distribution of documents, parameters specify topics})\)

 Estimate the parameters.

 - Simplifying assumptions. \((\text{for the model})\)
 \- bag of words: ordering does not matter.

 Consequence: \(\text{doc} \Leftrightarrow \text{frequency of words} \)
- Top topic structure
 - \text{topic} := \text{distribution over words}
 - \text{document} = (\text{linear}) \text{ mixture of topics.}

- "Algorithm" for generating documents
 - Given: \(A \in \mathbb{R}^{n \times k} \) "word-topic" matrix

- Pick \(w \sim D_{\text{topic}} \)
 - \(w \in \mathbb{R}^k, \sum_{i=1}^k w_i = 1 \)
- Pick length \(N \)
- For \(i = 1 \) to \(N \)
 - Independent \(\{ \text{pick topic } t_i \sim w \} \)
 - Bag-of-words \(\{ \text{pick word } z_i \sim A_{:, t_i} \} \)

- Matrix representation

- Different choices for \(D_{\text{topic}} \)
 - Pure documents:
 - \(w = e_i \) with probability \(\alpha_i \)
 - Latent Dirichlet Allocation (Blei, Ng, Jordan 03)
 - \(\text{Pr}[w] \propto \prod_{i=1}^K \alpha_i \alpha_i^{w_i} \)
 - \(\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_K) \)
 - Property: \(w \) is sparse (when \(\alpha_i \ll 1 \))
 - \(\alpha = \sum_i \alpha_i \) is roughly \# large entries
 - Correlated Topic Model (Blei Lafferty)
- Using NMF for topic models

 - Separability
 - Recall: \(i = 1, \ldots, k \), there is a row \(r_i \) such that \(a_{ri} > 0 \), \(\forall j \neq i \), \(a_{rj} = 0 \).
 - For every topic, there is a word ('anchor-word') that only appears in this topic. (also: has reasonable prob.)

 \[
 M^T = W A^T
 \]

 For every topic, there is a pure document.

 (Q: why do we use "anchor-words" instead of "pure doc")

- Sampling noise

 Example: \(\left(\frac{1}{10000}, \ldots, \frac{1}{10000} \right) \), 100 samples \(\Rightarrow \) vector with \(\leq 100 \) nonzero entries

 \(l_1 \) distance \(\approx 2 \)!

 too large to be called "perturbation"

- Idea: reducing noise with more documents

- Word-word correlation matrix

 \(q_{ij} = \Pr[z_i = i, z_j = j] \)

 Claim: \(Q = A A^T \), \(R = E[w w^T] \), \(w \sim \text{Topic} \)

 Proof: \(z_i, z_j \) independent conditioned on \(w \)

 \[
 Q = E[z_i z_j^T] = E[E[z_i z_j^T | w] \]
 \[
 = E[E[z_i | w] E[z_j^T | w]]
 \]

 \(w = a_1 \wedge \ldots \wedge a_k \wedge \Delta_1^T, \ldots \wedge \rho \Delta_k^T \)
\[
\begin{align*}
\mathbf{E}[\mathbf{w}^\top A \mathbf{w} A^\top] &= \mathbf{A} \mathbf{R} \mathbf{A}^\top \\
\end{align*}
\]

words in vocabulary fixed, # doc \(\to\) infinity

\(\Rightarrow\) can estimate \(Q\)

(recall: why not "pure doc"? hard to reduce noise)

- **High level Alg.**

 1. estimate \(Q\) matrix
 2. apply separable NMF to get \(Q = \tilde{A} \tilde{W}^*\)
 3. fix the scaling to find \(A\)

\[
\bar{Q}_{ij} = \frac{Q_{ij}}{\|Q_{ii}\|} = \frac{\Pr[Z_2 = j \mid Z_1 = i]}{\sum_{l=1}^{K} \Pr[Z_2 = j \mid t_1 = l] \Pr[t_1 = l \mid Z_1 = i]}
\]

\[
\begin{bmatrix}
\bar{Q} \\
\tilde{A} \\
\tilde{W}^* \\
\end{bmatrix}
\]

\[
\begin{align*}
\bar{Q}_{i,j} &= \frac{Q_{i,j}}{\|Q_{ii}\|} = \Pr[Z_2 = j \mid Z_1 = i] \\
\Pr[Z_2 = j \mid Z_1 = i] &= \sum_{l=1}^{K} \Pr[Z_2 = j \mid t_1 = l] \Pr[t_1 = l \mid Z_1 = i] \\
\end{align*}
\]

\(\bar{R}_l\): anchor word for topic \(l\), then

\[
\Pr[Z_2 = j \mid Z_1 = \bar{R}_l] = \Pr[Z_2 = j \mid t_1 = l]
\]

NMF:

\[
\bar{A}_{i,l} = \Pr[t_1 = l \mid Z_1 = i]
\]

want:

\[
A_{i,l} = \Pr[Z_2 = i \mid t_1 = l]
\]