Recap: Using NMF for topic modeling
- estimate $Q: Q_{i,j} = \Pr[z_i = i, z_j = j]
- NMF: $\bar{Q} = \bar{A} \bar{W}^*$ ($\bar{W}^* = \bar{R} \bar{A}^T$)
- Fix normalization in \bar{A}.

Problem 1. How to estimate Q?

Lemma: Let u be the word count vector for a length N document, then $E[u u^T - \text{diag}(u)] = N(N-1)Q$

Proof: $u = \sum_{i=1}^{N} z_i \iff i$th word

we know $E[z_i | w] = Aw \iff$ mixture of topics

$E[z_i z_j^T] = \bar{A} \bar{R}^T = Q$ (See last lecture)

but $E[z_i z_j^T] = \bar{E}[z_i z_j^T] \quad$ (Symmetry)

So $E[u u^T] = E\left[\sum_{i=1}^{N} \left(\sum_{j=1}^{N} z_i z_j^T\right)\right]$

$= \sum_{i \neq j} E[z_i z_j^T] + \sum_{i=1}^{N} E[z_i z_i^T]$

$= (N-1)Q + NQ = N(N+1)Q$
\[\mathbb{E} [\mathbf{u} \mathbf{u}^T - \text{diag}(\mathbf{u})] = N(N-1) \mathbf{Q} \]

Why is this better? Use more samples, get better estimate of \mathbf{Q}.

Problem 2: Algorithm for NMF is slow.

Fast algorithm: repeatedly look for the furthest point.

Given: V_1, V_2, \ldots, V_n

Find: vertices u_1, u_2, \ldots, u_k

u_1 = vector with largest norm

u_2 = vector farthest away from u_1

for $i = 3$ to n

u_i = vector farthest to $\text{aff}(u_1, u_2, \ldots, u_{i-1})$

\[\text{aff}(u_1, u_2, \ldots, u_k) = \left\{ u \mid u = \sum_{i=1}^{k} c_i u_i, \sum_{i=1}^{k} c_i = 1 \right\} \]

Recall \[\text{conv}(u_1, u_2, \ldots, u_k) = \text{cone}(u_1, \ldots, u_k) \cap \text{aff}(u_1, \ldots, u_k) \]

Inference Problem

Given A, document \mathbf{u}, how to find \mathbf{w}?

- Observations:
 - Cannot hope to get exact \mathbf{w}
 - In practice, try to approximate posterior dist.

 \[\text{Prior} \quad P(\mathbf{w}) \propto \prod_{i=1}^{k} w_i \]

 \[\mathbf{w} \mid A, \mathbf{u} \]

 - Can also try to find a matrix \mathbf{B} such that
 \[\mathbf{B} \mathbf{A} = \mathbf{I} \]
and use $\hat{\omega} = \frac{B\nu}{|\nu|}$

$$E[\hat{\omega}] = \frac{B E[\nu]}{N} = \frac{B \cdot N \cdot A\omega}{N} = B A \omega = \omega$$

Problem: how to control variance?

see http://128.84.21.199/abs/1605.08491