Lecture 4:
Topic Modeling in Practice
Evaluation

- **Toy Examples**: correctness.
- **Synthetic Examples**: running time, sample complexity, robustness
- **Real Data**
 - Qualitative evaluation: look at the topics found
 - Quantitative evaluation: held-out likelihood, ...
- **Real Application**: Apply topic models to recommend articles, social science, ...
Evaluating Topic Modeling Algorithm

● Compare to MALLAT (package based on Gibbs sampling)

● Variants of algorithms
 ○ Recover: Basic algorithm
 ○ Recover-L2: Try to minimize $\|Q-AW\|_F$
 ○ Recover-KL: Try to minimize KL-divergence between rows of Q and AW.

● Data Set: UCI New York Times
 ○ 295k articles, 15k vocabulary, average length~300
Running Time

- Algorithms are faster than MALLAT, because most of the work is done on the word-word correlation matrix.
Semi-synthetic Example

- **Idea:** Compute topic matrix by running MALLET on NYT data set, then generate synthetic documents.

- **Benefit:**
 - Has ground truth, measure error in parameter space
 - Easy to tweak parameters (different topic models, topic matrix, # documents, #words, ...)
 - Topic matrix is “natural”

- Data is still generated from the model, hard to evaluate the robustness of algorithm.
Semi-synthetic Experiments

- Performance is comparable to MALLAT, especially with more documents.
- Does not achieve 0 error with infinite data (not separable)
Anchor Words?

- Most topics have anchor words.
- Algorithms works OK even when some topics do not have anchor words.
Real Data (sample topics)

<table>
<thead>
<tr>
<th>RecoverL2</th>
<th>Gibbs</th>
</tr>
</thead>
<tbody>
<tr>
<td>president zzz_clinton zzz_white_house zzz_bush official zzz_bill_clinton</td>
<td>zzz_bush zzz_george_bush president administration zzz_white_house zzz_dick_cheney</td>
</tr>
<tr>
<td>father family zzz_elian boy court zzz_miami</td>
<td>zzz_cuba zzz_miami cuban zzz_elian boy protest</td>
</tr>
<tr>
<td>oil prices percent million market zzz_united_states</td>
<td>oil power energy gas prices plant</td>
</tr>
<tr>
<td>zzz_microsoft company computer system window software</td>
<td>zzz_microsoft company companies cable zzz_at zzz_internet</td>
</tr>
<tr>
<td>government election zzz_mexico political zzz_vicente_fox president</td>
<td>election political campaign zzz_party democratic voter</td>
</tr>
<tr>
<td>fight zzz_mike_tyson round right million champion</td>
<td>fight zzz_mike_tyson ring fighter champion round</td>
</tr>
</tbody>
</table>
Real Data (Held-out likelihood)

- Idea: For each document, show a fraction of words, use the learned topic matrix to predict the distribution \(\Pr[z = i|doc] \)

- For the rest of the words \(i_1, i_2, \ldots \)
 \[\text{Score} = \sum_j \log \Pr[z = i_j|doc] \]

- Details matter (how to predict \(\Pr[z=i|doc] \), fraction of held-out, smoothing…)

Real Data (Held-out likelihood)

- MALLAT is better, but RecoverKL is close.
- Recover algorithms followed by MALLAT improves held-out likelihood.
Challenges and New Algorithms

- **What if anchor-word assumption is not true?**
 - For LDA, can use tensor decomposition [AFHKL’12]
 - Only appear in 1 topic ⇒ Only appear in few topics (subset separable [GZ’15])
 - “Catch Words”: words that appear more frequently in one topic than all others [BBGKP’15]

- **How to guess the number of topics?**
 - Use low dimensional embeddings? [LeeMimno’14]

- **Variants of topic models?**
 - multilingual, temporal, …

- **Make the algorithm more robust?**
 - “Fix” the correlation matrix Q [LeeBindelMimno’15]
Homework

- Homework 1 is out, due in 2 weeks (9/21/2015 in class)
- Latex strongly encouraged.
- Discussions are allowed, but must acknowledge.
- Start early.
- Questions: post on Piazza.
References

Codes for Recover Algorithm:
http://www.cs.nyu.edu/~halpern/code.html
MALLAT package
http://mallet.cs.umass.edu/
Papers
[LeeMimno’14]
[GZ’15]
[BBGKP’15]
[LeeBindelMimno’15]