Due Date: November 16, 2015 in class.

Problem 1 (Stochastic Gradient Descent). In this problem we will try to analyze stochastic gradient descent algorithm for strongly convex functions.

Suppose \(f : \mathbb{R}^n \to \mathbb{R} \) is a \(L \)-smooth, \(\mu \)-strongly convex function with optimal point at \(x^* \). In particular
\[
\langle \nabla f(x), x - x^* \rangle \geq \frac{\mu}{2} \|x - x^*\|^2 + \frac{1}{2L} \|\nabla f(x)\|^2.
\]

We will try to optimize this function by running a stochastic gradient descent algorithm:

Algorithm 1 Stochastic Gradient Descent

\[
\text{for } t = 0 \text{ to } k - 1 \text{ do}
\]

\[
x^{(t+1)} = x^{(t)} - \eta_t (\nabla f(x^{(t)}) + \epsilon_t).
\]

\[
\text{end for}
\]

In the algorithm, \(\eta_t \) is a step size that we will choose later. The vector \(\nabla f(x^{(t)}) + \epsilon_t \) is a stochastic gradient for \(f \) at \(x^{(t)} \), in particular, \(\epsilon_t \) is a random variable that only depends on \(x^{(t)} \), and for every \(x \)

\[
\mathbb{E}[\epsilon|x] = 0, \mathbb{E}[\|\epsilon\|^2|x] \leq \sigma^2.
\]

(a) (5 points) Let \(r_t = \mathbb{E}[\|x^{(t)} - x^*\|^2] \), show that when \(\eta \leq \frac{1}{L} \),
\[
r_{t+1} \leq (1 - \eta \mu) r_t + \eta^2 \sigma^2.
\]

(Hint: Consider \(r_{t+1} = \mathbb{E}[\|(x^{(t)} - x^*) - \eta(\nabla f(x^{(t)}) + \epsilon_t)\|^2] \), and expand out the square.)

(b) (5 points) Show that when \(r_t \geq \frac{2\sigma^2}{\mu^2} \), we can choose \(\eta_t = \frac{1}{t} \), and get \(r_{t+1} \leq (1 - \frac{\mu}{2L}) r_t \).

(c) (10 points) Suppose \(r_{t_0} = \frac{4\sigma^2}{\mu^2 k} \) for some integer \(k \), and \(k \geq \frac{2L}{\mu} \). Show that we can choose \(\eta_t \) appropriately to ensure \(r_{t_0+t} \leq \frac{4\sigma^2}{\mu^2 (k+t)} \) for all integer \(t > 0 \).

(Hint: The bound in (b) is quadratic in \(\eta \), optimize that to get a good choice of step size.)

Problem 2 (Saddle Points). We would like to find a tensor decomposition via optimization. Consider an orthogonal tensor

\[
T = \sum_{i=1}^{n} u_i \otimes u_i \otimes u_i \otimes u_i.
\]
Here \(\{u_i\} \)'s are orthonormal vectors. We would like to maximize

\[
T(x, x, x) - \|x\|^6 = \sum_{i=1}^{n} \langle x, u_i \rangle^4 - \|x\|^6.
\]

For simplicity, we can express \(x \) in the basis of \(\{u_i\}'s \). Let \(y_i = \langle x, u_i \rangle \), then the maximization problem becomes

\[
\max f(y) = \sum_{i=1}^{n} y_i^4 - \|y\|^6.
\]

Our goal now is to prove all local maxima of this function corresponds to directions \(y = \pm e_i \) (where \(e_i \) is the \(i \)-th basis vector). As a result \(x = \pm u_i \).

(a) (10 points) For any basis direction \(e_i \), show that there are exactly two local maxima for \(f(y) \) along this direction (one in the \(+e_i\) direction and the other in the \(-e_i\) direction).

(b) (10 points) For any subset \(S \subseteq \{1, 2, \ldots, n\} \), if \(1 < |S| \leq n \), show that there is a saddle point in the direction \(1_S \). Here \(1_S \) is the indicator vector for \(S \): \(1_S[i] = 1 \) if and only if \(i \in S \).

(Hint: For both (a) (b) you can look at the gradient and Hessian, and apply second order optimality condition.)