How does a programmer specify the view parameters to a computer?

Similar to taking a picture.
View Parameters

★ Position of the camera.

\[\text{pos} = (\text{pos}_x, \text{pos}_y, \text{pos}_z). \]

★ Orientation
- Point at which camera is focused.
 \[\text{look} = (\text{look}_x, \text{look}_y, \text{look}_z). \]
- Orientation of the camera.
 \[\text{UP} = (\text{UP}_x, \text{UP}_y, \text{UP}_z). \]

★ Field of view.
- Aspect ratio, angle of view.

★ Depth of field
- Near and far distances.

★ Perspective/parallel projection.

★ Determine focal distance.
Viewing in OpenGL

\[
\text{gluLookAt}(\text{eye}, \text{at}, \text{up})
\]

- \(\text{eye} = (\text{eyex}, \text{eyey}, \text{eyez}) \): Viewpoint position
- \(\text{at} = (\text{atx}, \text{aty}, \text{atz}) \): Any point along the line of sight; typically the center of the image.
 \[
 \text{look} = \text{at} \Leftrightarrow \text{eye}
 \]
- \(\text{up} = (\text{upx}, \text{upy}, \text{upz}) \): Up direction

\[
\text{gluLookAt}(\text{eyex}, \text{eyey}, \text{eyez}, \text{atx}, \text{aty}, \text{atz}, \\
\text{upx}, \text{upy}, \text{upz})
\]

Default command

\[
\text{gluLookAt}(0.0, 0.0, 0.0, 0.0, 0.0, \Leftrightarrow 1.0, \\
0.0, 1.0, 0.0)
\]

Typically appears at the beginning of the program.
Default OpenGL parameters

- \(\text{pos} = (0.0, 0.0, 0.0) \)
- \(\text{look} = (0.0, 0.0, 1.0) \)
- \(\text{UP} = (0.0, 1.0, 0.0) \)

Change the view point to \((0, 0, 10)\)

- Translate every object by \((0, 0, 10)\)
- `glTranslated (0.0, 0.0, 10.0)`
Change \(pos = (5, 0, 0)\) and \(look = (\leftrightarrow1, 0, 0)\)!

\[
\begin{align*}
glMatrixMode & (GL_MODELVIEW) \\
glLoadIdentity & () \\
glTranslatef & (0.0, 0.0, \leftrightarrow5) \\
glRotatef & (\leftrightarrow90.0, 0.0, 1.0, 0.0)
\end{align*}
\]
★ **World coordinate system**
Standard $x \leftrightarrow, y \leftrightarrow, z$-coordinates.

★ **Viewing coordinate system**
(u, v, n) coordinates.

- Origin at *position*.
- *look* is in $\leftrightarrow n$-direction.
- v is determined by *UP* vector. *UP* is not necessarily normal to n, so a correction is required.
- u is normal to *UP* and n.
- Coordinate system satisfies the right-hand rule.
Computation with \(u, v, n \)

\[
\begin{align*}
n &= \frac{\text{look}}{\|\text{look}\|} \\
u &= \frac{\text{look} \times \text{UP}}{\|\text{look} \times \text{UP}\|} \\
v &= \frac{u \times \text{look}}{\|u \times \text{look}\|}
\end{align*}
\]

Adjusted

\[
\begin{align*}
n &= \frac{\text{look}}{\|\text{look}\|} \\
u &= \frac{\text{look} \times \text{UP}}{\|\text{look} \times \text{UP}\|} \\
v &= \frac{u \times \text{look}}{\|u \times \text{look}\|}
\end{align*}
\]

\[
\begin{align*}
n &= \frac{\text{look}}{\|\text{look}\|} \\
u &= \frac{\text{look} \times \text{UP}}{\|\text{look} \times \text{UP}\|} \\
v &= \frac{u \times \text{look}}{\|u \times \text{look}\|}
\end{align*}
\]

\[
\begin{align*}
n &= \frac{\text{look}}{\|\text{look}\|} \\
u &= \frac{\text{look} \times \text{UP}}{\|\text{look} \times \text{UP}\|} \\
v &= \frac{u \times \text{look}}{\|u \times \text{look}\|}
\end{align*}
\]

\[
\begin{align*}
n &= \frac{\text{look}}{\|\text{look}\|} \\
u &= \frac{\text{look} \times \text{UP}}{\|\text{look} \times \text{UP}\|} \\
v &= \frac{u \times \text{look}}{\|u \times \text{look}\|}
\end{align*}
\]

\[
\begin{align*}
n &= \frac{\text{look}}{\|\text{look}\|} \\
u &= \frac{\text{look} \times \text{UP}}{\|\text{look} \times \text{UP}\|} \\
v &= \frac{u \times \text{look}}{\|u \times \text{look}\|}
\end{align*}
\]

\[
\begin{align*}
n &= \frac{\text{look}}{\|\text{look}\|} \\
u &= \frac{\text{look} \times \text{UP}}{\|\text{look} \times \text{UP}\|} \\
v &= \frac{u \times \text{look}}{\|u \times \text{look}\|}
\end{align*}
\]

\[
\begin{align*}
n &= \frac{\text{look}}{\|\text{look}\|} \\
u &= \frac{\text{look} \times \text{UP}}{\|\text{look} \times \text{UP}\|} \\
v &= \frac{u \times \text{look}}{\|u \times \text{look}\|}
\end{align*}
\]

\[
\begin{align*}
n &= \frac{\text{look}}{\|\text{look}\|} \\
u &= \frac{\text{look} \times \text{UP}}{\|\text{look} \times \text{UP}\|} \\
v &= \frac{u \times \text{look}}{\|u \times \text{look}\|}
\end{align*}
\]

\[
\begin{align*}
n &= \frac{\text{look}}{\|\text{look}\|} \\
u &= \frac{\text{look} \times \text{UP}}{\|\text{look} \times \text{UP}\|} \\
v &= \frac{u \times \text{look}}{\|u \times \text{look}\|}
\end{align*}
\]

\[
\begin{align*}
n &= \frac{\text{look}}{\|\text{look}\|} \\
u &= \frac{\text{look} \times \text{UP}}{\|\text{look} \times \text{UP}\|} \\
v &= \frac{u \times \text{look}}{\|u \times \text{look}\|}
\end{align*}
\]
World to View Coordinates

★ \(pos = (pos_x, pos_y, pos_z) \),
★ \(u = (u_x, u_y, u_z) \),
★ \(v = (v_x, v_y, v_z) \),
★ \(n = (n_x, n_y, n_z) \)

★ Perform a translation \(T_C \) so that \(pos \) maps to the origin.

\[
T_C = \begin{bmatrix}
0 & 0 & 0 & \Leftrightarrow pos_x \\
0 & 0 & 0 & \Leftrightarrow pos_y \\
0 & 0 & 0 & \Leftrightarrow pos_z \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

★ Perform a rotation \(R_C \) so that \(u \to x \), \(v \to y \), and \(n \to z \).

\[
R_C = \begin{bmatrix}
u_x & u_y & u_z & 0 \\
v_x & v_y & v_z & 0 \\
n_x & n_y & n_z & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

★ \(M_C = R_C \cdot T_C \).
Perspective Projection

- Angle of view
- View volume
- View plane
- Front clipping plane
- Back clipping plane
- COP
Viewing volume:

- Defines the region of visible objects.

- Objects lying outside the viewing volume are discarded.

 \[
 \text{glFrustum}(l, r, b, t, n, f)
 \]

- Frustum need not be symmetric with respect to the line of sight.
Perspective Projection

- \(l \): \(x \)-coordinate of the left edge of the near plane.
- \(r \): \(x \)-coordinate of the right edge of the near plane.
- \(b \): \(y \)-coordinate of the bottom edge of the near plane.
- \(t \): \(y \)-coordinate of the top edge of the near plane.
- \(n \): \(z \)-coordinate of the near plane.
- \(f \): \(z \)-coordinate of the far plane.

\((l, b, \leftrightarrow n)\): left-bottom corner of the near plane.
\((r, t, \leftrightarrow n)\): top-right corner of the near plane.
Estimating l, r, b, t is difficult!

\[\theta \]

\[\alpha = \frac{w}{h} \]

\[n \]

\[f \]

\texttt{gluPerspective}(\theta, \alpha, n, f)

\theta: Angle of the field view; $\theta \in [0.0, 180.0]$.

\alpha: Aspect ratio (x-length/y-length).

Line of sight is the (\leftrightarrow)-axis.

Frustum symmetric with respect to the line of sight.
Canonical View

- \(\text{eye} = (0, 0, 0), \text{look} = (0, 0, \pm 1), \)
 \(\text{UP} = (0, 1, 0). \)

- Viewing volume is always the parallel box
 \([\pm 1, +1] \times [\pm 1, +1] \times [\pm 1, 0]\)

Simplifies clipping, projection, hidden surface removal

- Projection: ignore the \(z \)-coordinate
- Hidden surface removal: compare \(z \)-coordinates
Perspective transform

Perform a transformation so that

- The far clipping plane is \(z = 1 \)
- Corners of the clipping rectangle on the far plane are \((\pm 1, \pm 1, 1) \)
Perform a perspective transformation so that
- Viewing volume is a parallel box
- Near clipping plane is $z = 0$,
 far plane is at $z = 1$
- Distorts the objects
x = (tan(θ_w/2), 0, 1), x' = (1, 0, 1)
y = (0, tan(θ_h/2), 1), x' = (0, 1, 1)

★ Need to scale x by 1/ tan(θ_w/2) = cot(θ_w/2)
★ Need to scale y by 1/ tan(θ_h/2) = cot(θ_h/2)

\[
S_{xy} = \begin{bmatrix}
\cot(θ_w/2) & 0 & 0 & 0 \\
0 & \cot(θ_h/2) & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\]
Far clipping plane may lie at $z \neq 1$

Scale so that the far clipping plane is $z = 1$

S_{xy} does not scale the z-coordinates, so far plane is at $z = f$.

Perform a uniform scaling by $1/f$

$$S_2 = \begin{bmatrix}
1/f & 0 & 0 & 0 \\
0 & 1/f & 0 & 0 \\
0 & 0 & 1/f & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}$$
Suppose that the near clipping plane \(z = n \) after applying \(S_2 \cdot S_{xy} \) is \(z = k \).

Show that \(k = n/f \! \)

\[
D = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1/(1 \Leftrightarrow k) & k/(1 \Leftrightarrow k) & 0 \\
0 & 0 & \Leftrightarrow 1 & 0 & 0
\end{bmatrix}
\]

\[
\text{PROJ} = D \cdot S_2 \cdot S_{xy}
\]
Geometric Projections

Front elevation

Elevation oblique

Plan oblique

Isometric

One-point perspective

Three-point perspective
Geometric Projections

✫ Projection plane: Plane Π

✫ Projectors
Rays emanating from the center of projection and passing thru points of the object.

✫ Projection
Intersection of projectors with plane Π.

Non-geometric projections used in cartography.
Different Projections

✫ **Perspective:**

- Center of projection is at a finite distance from plane II.
- *Perspective foreshortening.*

✫ **Parallel:**

- Center of Projection is at ∞.
- Defined by the direction $(x, y, z, 0)$.
- Directions \leftrightarrow Points at infinity.
Center of projection at origin

Using similar triangles

\[\frac{x_p}{d} = \frac{x}{z}; \frac{y_p}{d} = \frac{y}{z} \]

\[x_p = \frac{x}{z/d}; y_p = \frac{y}{z/d} \]

\[z_p = d \]
Mathematics of Projections

\[M_{\text{per}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1/d & 0 \end{bmatrix} \]

\[p = \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} \quad \quad q = M_{\text{per}} p = \begin{bmatrix} x \\ y \\ z \\ z/d \end{bmatrix} \]

\[q' = \begin{bmatrix} \frac{x}{z/d} \\ \frac{y}{z/d} \\ d \\ 1 \end{bmatrix} = \begin{bmatrix} x_p \\ y_p \\ z_p \\ 1 \end{bmatrix} \]

Model-view → Projection → Perspective division
History of Projections

- Plan from Mesopotamia, \(\approx 2000\text{BC} \).
- Early Greeks: \textit{Agatharchus} (\(\approx 500 \text{BC} \))
 \textit{Apollonius} studied projections of conics.
- Romans: \textit{Vitruvius} wrote \textit{De Architectura}
 Published specifications of plan and elevation drawings, and perspective.
- Early Renaissance period: Emphasis on point of view, interpretation of world.
 - Giotto
 - Duccio
 - Mossacio
 - Dotallo
 - Dürer
 - Vinci
 - Raphael
Filippo Brunelleschi invented systematic method of determining perspective projections in early 1400s.
Leone Battista Alberti wrote the first treatise on perspective, *Della Pittura*, in 1435.

A painting is the intersection of a visual pyramid at a given distance, with a fixed center and a definite position of light, represented by art with lines and colors on a given surface.

— On Painting
History of Perspective

✩ Piero della Francesca: *De Prospettiva Pengendi*

✩ Domencio Veneziano: *St. Lucy Altarpiece.*

✩ Leonardo da Vinci: *The Last Supper, Annunciation*

✩ Gerard Desargues: French architect, engineer,

✩ Gaspard Monge: multiple orthographic projections
Foreshortening gives a realistic view for 3-dimensional objects.

Foreshortening is not uniform.

Parallel edges don’t remain parallel; scales and other geometric properties are not preserved.

Used for advertising, fine art, architecture.
Parallel lines meet at infinity.

Fix a direction \(d\).

\(p(d)\): Point at infinity in direction \(d\).

\(L(d)\): Set of all lines parallel to direction \(d\).

\(\Pi\): A plane not parallel to \(d\).
Projection of all lines in $L(d)$ on Π meet at a common point $p'(d)$, which is the projection of $p(d)$ on Π.

$p'(d)$ is called the \textit{vanishing point} of $L(d)$. If d is one of the axes, $p'(d)$ is called \textit{axis vanishing point}.

There are at most 3 axis vanishing points.
Di/#0Berent P ersp ective Views

Computer Graphics

Page 32
Π parallel to the xy-plane ⇔ One axis vanishing point.
Two Vanishing Points

Viewing plane is parallel to only one axis.

Projections with two vanishing points are used in architecture drawings.
Viewing plane is not parallel to any axis.
Parallel Projections

- **Orthographic:**
 Projectors are perpendicular to the projection plane.

- **Oblique:**
 Projectors not perpendicular to the projection plane.
Orthographic Projections

★ Front, top, side views: Projectors parallel to one of the principal axes

★ Front, top, side views:
Axonometric Projections
Orthographic Projections

- **Dimetric:** Equal angle with two axes.
- **Trimetric:** Distinct angle with all three axes.

Isometric:
Projectors make equal angle with each axis.

Eight possible directions \((\pm 1, \pm 1, \pm 1)\).

- **Dimetric:** Equal angle with two axes.
- **Trimetric:** Distinct angle with all three axes.
glOrtho \((l, r, b, t, n, f)\)
Arguments are the same as in **glFrustum**.

glOrtho2d \((l, r, b, t)\)
Same as **glOrtho** \((l, r, b, t, 0, 0)\).
Useful for 2D viewing.
Cavalier projection:

⭐ Angle between projectors and projection plane is $\pi/4$

⭐ Length of a segment \perp the projection plane = Length of the projection of the segment.
Cabinet projection:

- Angle between projectors and projection plane is $\tan^{-1} 2 \approx 63.4$.
- Length of a line normal to the projection plane = Twice the length of the projection of the line.
Summary of Projections

Planar geometric projections

Parallel
- Orthographic
 - Top (plan)
 - Front elevation
 - Axonometric
 - Side elevation
 - Isometric
- Side elevation
- Isometric
 - Other

Perspective
- Oblique
 - Cabinet
 - Cavalier
 - Other
- One-point
 - Two-point
 - Three-point

Other
Projection plane to screen transformation.

\[\text{glViewport}(x, y, w, h) \]

- \(x, y\): Lower left corner of the viewport.
- \(w\): Width of the viewport.
- \(h\): Height of the viewport.