Mining Search Engine Query Logs via Suggestion Sampling

Ziv Bar-Yossef
Technion and Google

Maxim Gurevich
Technion
Search Engine Query Logs

- Used by search engines to improve search results
- Contains private information
 - Of users and of the search engine itself
- Not disclosed by search engines
Applications of Query Log Analysis

- Keyword based advertising
- Search quality evaluation
- User modeling
Keyword Based Advertising

- Compare keyword popularity
- Track keyword popularity over time
- Find related keywords
Search Quality Evaluation

- Estimate the amount of undesirable content sent to users
 - Spam
 - Stale results
 - Non-existent results
 - Pornography
 - Hate materials
 - Virus contaminated pages
 - ...

- Estimate search engine bias towards
 - Authoritative sources
 - Certain domains
 - Certain languages
 - ...
User modeling

- Distribution of query types [Broder 02]
 - Navigational
 - Informational
 - Transactional
- Density of commercial queries
- Fraction of geographical queries
- ...

External Query Log Mining

- Sampling (uniform or by popularity)
- Computing aggregate (privacy preserving) functions
Suggest: Trapdoor to Query Logs

- Query auto-completion
 - Suggests query completions
 - More popular first
 - Offered by major search engines
- Backed by a hidden underlying database
 - Assumption: Derived from query logs
Our Contribution

- Algorithm for sampling queries uniformly from the query log using the suggestion service
 - Practical (few suggestion requests)
 - Unbiased
- Algorithm for sampling queries from the query log proportionally to their popularity using the suggestion service
 - Practical (few suggestion requests)
 - Slightly biased
Related Work

- Sampling documents from search engine index
 [BarYossef et al 06,07, Broder et al 07, ...]
 - Different problem and setting
- Sampling from B-trees
 [Wong et al 80, Olken et al 89,95]
 - B-tree specific assumptions
 - Inefficient for query log mining
- Sampling from databases behind web forms
 [Dasgupta et al 07]
 - Different setting, inefficient for query log mining
- Uniform sampling of combinatorial structures
 [Jerrum et al. 86]
 - Theoretical, the basis of our sampling algorithm
Uniform Suggestion Sampling

Suggestion TRIE

- **suggestion node**
- **popularity**

Example:
- Query prefix: "m"
- Top k (10) suggestions
 - mp3 song
 - mp3
 - mp3 tag

Goal: Sample suggestion nodes uniformly
Volume Estimators

- Define: \(\text{volume}(\alpha) = \# \) of suggestions starting with \(\alpha \)

![Diagram showing volume estimators and server connections]

- Example:
 - \(\text{vol}(m) = 3 \)
 - \(\text{vol}(w) = 2 \)

- Illustration of suggestion and volume calculation process.

- Estimate of volume(\(\alpha \))
Random Walk Tree Sampling

- **Assumption**: we have a prefect volume estimator

- **current** = root
- while true
 - If current is a suggestion node
 - Return **current** with probability \(1/\text{volume}(\text{current})\)
 - Go to child \(x\) with probability \(\propto \text{volume}(x)\)

- **Theorem**: If volumes are accurate, the samples are uniform
How To Estimate Volumes

- **Input:** Prefix string α
- **Output:** $\approx \#$ of suggestions starting with α
- **Naïve estimator:** $\text{volume}(\alpha) \approx \#$ of suggestions the server returns on α
- **Popularity based estimator:** $\text{volume}(\alpha) \approx \text{popularity}($most popular suggestion for $\alpha$$)$
 - Rationale: Power Law distribution of popularity
 (procedure for popularity estimation is included in the paper)
- **Sample based estimator:** $\text{volume}(\alpha) \approx \text{normalized number of suggestions for } \alpha \text{ in a previously available query log}$
- **Final estimator** aggregates all the three results
Caveat

- Random Walk Tree Sampler assumed volumes are known perfectly
- We can only approximate volumes (heuristically)

- Suggestion samples are not uniform
Monte Carlo Stochastic Simulation

- \(\pi = \text{target distribution} = \) uniform distribution on suggestions
 - Can deal with other target distributions as well
- \(p = \text{trial distribution} \) on \(S \)
 - Can compute \(p(x) \) for each \(x \)
 - \(p \neq \pi \) but support(\(p \)) should contain support(\(\pi \))
 - \(p \) should be easy-to-sample-from

\[\pi \rightarrow \text{Sampler} \]
\[p \rightarrow \text{Sampler} \]
\[S \]
\[y_1, \ldots, y_k \text{ from } p \]

Monte Carlo Simulator

- A sample \(x \) from \(\pi \)
Rejection Sampling

[von Neumann 63]

- \textbf{accepted} := false
- while (not \textbf{accepted})
 - Sample suggestion \(q \) from \(p \)
 - Calculate \(p(q) \) and \(\pi(q) \)
 - Toss a coin whose heads probability is \(\frac{\pi(q)}{C \cdot p(q)} \)
 - if coin comes up heads, \textbf{accepted} := true
- return \(q \)

\[
\Pr(q \text{ accepted}) = p(q) \cdot \frac{\pi(q)}{C \cdot p(q)} \propto \pi(q)
\]
Recap – Uniform Sampling

- Suggestion Server
- Tree Sampler
- Volume Estimator
- Monte Carlo Simulator ($\pi = \text{uniform}$)

Samples y_1, \ldots, y_k from p

- ~6000 suggestion server requests per uniform sample
Popularity based suggestion sampling

- Assumptions
 - Popularity is distributed according to Power Law
 - The Power Law exponent is known apriori
- Basic building block: Popularity Estimator (PE)

\[\pi(y) = \text{PE}(y) \]

Basic building blocks:
- Monte Carlo Simulator
- Volume Estimator
- Tree Sampler
- Suggestion Server
Sampling Bias

![Bar chart showing sampling bias]

The bar chart above illustrates the percentage of suggestions in a sample, comparing uniform sampling with sampling based on popularity. The x-axis represents the deciles of suggestions ordered by popularity, while the y-axis shows the percentage of suggestions in the sample. The chart highlights the discrepancy between uniform sampling and popularity-based sampling, indicating a significant bias towards more popular suggestions in the latter.
Coverage of sampled queries by Wikipedia

![Bar chart showing coverage of queries by Wikipedia for SE1 and SE2 categories. The chart compares uniform and popularity-based queries. SE2 shows higher coverage compared to SE1.](chart.png)
Percent of non-existent search results

![Graph showing percent of dead pages for SE1 and SE2.](image)
Conclusions

- Algorithms for sampling queries randomly from a search engine query log
 - Uniformly or by popularity
 - Useful for keyword based advertising, search engine evaluation, user behavior studies
 - Via public suggestion interface only
 - Practical (accurate and efficient)
Thank You