Discrete Probability IV

COMPSCI 230 — Discrete Math

April 13, 2017
Outline

1. Random Variables and Probability Distributions
2. Expectation
3. Repeated Bernoulli Trials
 - Distributions Related to Bernoulli Trials
From Outcomes to Numbers

• We often associate numbers to outcomes
• Example: Coin flip, bet on H
• Win $W = g = \$10$ if head, win $W = \ell = -\$10$ if tail
• How much do I win on average if $p = P(H) = 0.6$?
• Let the answer be a
• Approximate frequentist interpretation: If I play the game 1000 times, then I win close to $1000a$
• However, we play once
• We need to tie g to H and ℓ to T
Random Variables

- We need to tie g to H and ℓ to T
- H, T are in the sample space \mathcal{S}
- g, ℓ are in \mathbb{R}
- Any function $W = f(O) : \mathcal{S} \to \mathbb{R}$ is called a random variable
- *It is neither random, nor a variable*
- It is a deterministic function of the outcome
- If you just look at the image ($W = g$ or $W = \ell$) as a variable then its value varies randomly
- Hence the (arguably confusing) name
- In the example,

$$W : \{H, T\} \to \mathbb{R}$$

is defined as

$$W(H) = g \quad \text{and} \quad W(T) = \ell$$
Probability Distribution

- A probability function defined on a random variable is called a **probability distribution**:

\[
P(X = x) = \sum_{O \in \mathbb{S} : X(O) = x} P(O)
\]

- \(P(X = x_a) = P(O_1)\), \(P(X = x_b) = P(O_2) + P(O_3)\)

- Example 1: Roll of one fair die, \(x = X(O) = (O \mod 2)\)
 - \(X(2) = X(4) = X(6) = 0\)
 - \(X(1) = X(3) = X(5) = 1\)
 - \(P(X = 0) = P(X = 1) = 1/2\)

- Example 2: Money won when betting on \(H\) in a coin flip,
 \[
 W(O) = \begin{cases}
 g & \text{for } O = H \\
 \ell & \text{for } O = T
 \end{cases}
 \]
 - \(P(W = g) = 0.6\)
 - \(P(W = \ell) = 0.4\)
Clicker Test

Computer Science is ... (Not Graded)
A: boring
B: dry
C: useful
D: interesting
E: exciting
Uniform Distribution

The expected value for the outcome of the roll of a fair die is ...

Pick one (Graded)

A: 1/6
B: 3
C: 3.5
D: 4
E: 6
Binomial Distribution

The probability that there are \(k \) successes in a binomial experiment with \(n \) trials and success probability \(p \) is ...

Pick one

A: \(p^k \)

B: \(p^k (1 - p)^{n-k} \)

C: \(\binom{n}{k} \)

D: \(\binom{n}{k} p^k (1 - p)^{n-k} \)

E: \(\sum_{k=0}^{n} \binom{n}{k} p^k (1 - p)^{n-k} \)
Geometric Distribution

The expected number of trials required for the first success in a Bernoulli trial with success probability p is ...

Pick one (Graded)

A: n
B: $1/p$
C: $(1 - p)^{n-1} p$
D: p
E: $p/(1 - p)$
Expectation

• I win $W = g = \$10$ with probability $P(H) = p = 0.6$
• I win $W = \ell = -\$10$ with probability $P(T) = q = (1 - p) = 0.4$
• My **expected win** is defined as
 \[a = \mathbb{E}[W] = \mathbb{E}[f(O)] = P(H)f(H) + P(T)f(T) = pf(H) + qf(T) = pg + (1 - p)\ell = 0.6 \cdot 10 + 0.4 \cdot (-10) = \$2 \]
• If I play the game 1000 times, then I win close to 1000$\mathbb{E}[W] = \$2000$
• However, we play once: Expected win is $\$2$
• More generally the **expected value** (or **expectation**) of random variable $W = f(O)$ is
 \[E[W] = E[f(O)] = \sum_{O \in S} f(O)P(O) = \sum_{x \in f(S)} x \sum_{O \in S \text{ : } f(O) = x} P(O) \]
• Also applies to compound experiments (O is a tuple)
Computing Expectation

\[E[W] = E[f(O)] = \sum_{O \in S} f(O) P(O) = \sum_{x \in f(S)} x \sum_{O \in S : f(O) = x} P(O) \]

Example:

<table>
<thead>
<tr>
<th>(O)</th>
<th>(f(O))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(O_1)</td>
<td>2</td>
</tr>
<tr>
<td>(O_2)</td>
<td>5</td>
</tr>
<tr>
<td>(O_3)</td>
<td>1</td>
</tr>
<tr>
<td>(O_4)</td>
<td>2</td>
</tr>
<tr>
<td>(O_5)</td>
<td>1</td>
</tr>
<tr>
<td>(O_6)</td>
<td>2</td>
</tr>
</tbody>
</table>

\[
2P(O_1) + 5P(O_2) + 1P(O_3) + 2P(O_4) + 1P(O_5) + 2P(O_6)
= 2[P(O_1) + P(O_4) + P(O_6)] + 1[P(O_3) + P(O_5)] + 5[P(O_2)]
\]
Expectation is Linear

- \(\mathbb{E}[aU + bV] = a\mathbb{E}[U] + b\mathbb{E}[V] \) because

 \[
 \mathbb{E}[aU + bV] = \sum_{O \in S} P(O) [aU(O) + bV(O)]
 = a \sum_{O \in S} P(O) U(O) + b \sum_{O \in S} P(O) V(O)
 = a \mathbb{E}[U] + b \mathbb{E}[V]
 \]

- Example: Upton wins or loses 8 pounds sterling. Valerie wins or loses 10 dollars
- \(\mathbb{E}[U] = 0.6 \cdot 8 - 0.4 \cdot 8 = 1.6 \) pounds
- \(\mathbb{E}[V] = 0.6 \cdot 10 - 0.4 \cdot 10 = 2 \) dollars
- Exchange rate: 1.25 dollars per pound sterling
- Combined win: \(1.25 \mathbb{E}[U] + \mathbb{E}[V] = 1.25 \cdot 1.6 + 2 = $4 \)
- If the exchange rate changes, we do not need to recompute \(\mathbb{E}[U], \mathbb{E}[V] \)
Bernoulli Trials

- A repeated coin flip is an example of a Bernoulli trial:
 - Two outcomes per repetition
 - Fixed probability p of “success”
 - Repetition outcomes are independent
- This is an unbounded repeated experiment
- Outcome $C = (C_1, C_2, \ldots)$ (Python generator?)
- Sample space $\mathcal{S}^\infty = \mathcal{S} \times \mathcal{S} \times \ldots$ where $\mathcal{S} = \{H, T\}$
- The infinite sequence C is one outcome of the repeated experiment
- So we can define random variables

$$X : \mathcal{S}^\infty \rightarrow \mathbb{R}$$
Binomial Experiment

- Example 1 of random variable on Bernoulli trials:
 \[B_n(C) = k \text{ iff there are } k \text{ successes in the first } n \text{ trials} \]
 [A different random variable for each \(n \)]

- What is \(P_{B_n}(k) \)?

- Choose which \(k \) are successes: \(\binom{n}{k} \)

- These are mutually exclusive choices

- Probability that the chosen \(k \) are successes: \(p^k \)
 (because of independence)

- Probability that the remaining \(n - k \) are failures: \((1 - p)^{n-k} \)
 (ditto)

\[
P_{B_n}(k) = \binom{n}{k} p^k (1 - p)^{n-k}
\]

- Binomial distribution
Mean of the Binomial Distribution

\[
\mathbb{E}[B_n] = \sum_{k=0}^{n} k \ P_{B_n}(k) = \sum_{k=1}^{n} k \binom{n}{k} p^k (1-p)^{n-k}
\]

\[
k \binom{n}{k} = \frac{k \ n!}{k! \ (n-k)!} = \frac{n!}{(k-1)! \ (n-k)!} = \frac{n!}{(k-1)! \ (n-1-(k-1))!}
\]

\[
= \frac{n(n-1)!}{(k-1)! \ (n-1-(k-1))!} = n \binom{n-1}{k-1}
\]

\[
\mathbb{E}[B_n] = \sum_{k=1}^{n} n \binom{n-1}{k-1} p^k (1-p)^{n-k} = np \sum_{k=1}^{n} \binom{n-1}{k-1} p^{k-1} (1-p)^{n-1-(k-1)}
\]

\[
= np \sum_{k=0}^{n-1} \binom{n-1}{k} p^k (1-p)^{n-1-k} = np \ (p + 1-p)^{n-1} = np
\]
Expected Number of Trials to First Success

• Example 2 of random variable on Bernoulli trials:

\[N(C') = n \quad \text{iff the first } H \text{ is in trial } n \in \mathbb{N} \]

• \(N = n \) iff \(n - 1 \) Ts are followed by one \(H \)

• [and what happens after that does not matter]

• Example: \(n = 4 \). \((T, T, T, H, ...)\)

• Because of independence, \(P(N = n) = q^{n-1}p \)

• **Geometric distribution** (no upper bound on \(n \))

• \(\mathbb{E}[N] \): expected number of trials until the first success

• How many times do you need to flip a coin on average until it comes up \(H \)?
Bad Luck

If the probability of H is $p = 0.6$, what is the probability that H never occurs in a Bernoulli trial?

Pick one

(A: 0 B: 0.4 C: 1/0.4 D: 1/0.6 E: 0.6)

$$\lim_{n \to \infty} (1 - p)^n = 0$$
Unbounded Sample Spaces

What is the cardinality of $\mathbb{S}^\infty = \{0, 1\}^\infty$?

Pick one (Not Graded)

A: 2
B: cardinality of the naturals
C: cardinality of the reals
D: depends on the number of trials

So we are technically going beyond "discrete probability"

There will be limits...
Expected Trials to Success

The probability that a coin comes up head is $p = \frac{2}{5}$. What is the expected number of trials needed to see one head outcome?

Pick one (Not Graded)

- **A**: 1
- **B**: 2
- **C**: 2.5
- **D**: 3
- **E**: 5