
Software Design 14.1

A Timeless Way of Building: patterns
Design patterns had their genesis in Architecture, Christopher
Alexander, The Timeless Way of Building, Notes on the
Synthesis of Form

Not universally accepted by architects, but design patterns
acknowledged as fundamental to OO programming
Adherence to form in explanations isn’t as important as
understanding the patterns

“A whole is created by putting together parts. The parts come
first: and the form of the whole comes second”

“It is impossible to form anything which has the character
of nature by adding preformed parts”
Create flexible/reusable classes, not modules (do you want
to live in a modular home?)

Software Design 14.2

From simple to complex
“Design [is a] sequence of acts of complexification; structure is
injected into the whole by operating on the whole and
crinkling it, not by adding little parts to one another. In the
process of differentiation, the whole gives birth to its parts:
The form of the whole, and its parts, come into being
simultaneously. The image of the differentiating process is
the growth of an embryo.”

Start simple, and grow the software in a natural way
Inject information as needed, don’t start off with the final
concept as a full-blown entity: too much information is
overload

Identify patterns, start with those that create context for other
patterns, implement by adding things piecemeal.

Software Design 14.3

What is encapsulation
Why do we have public/private methods/instance variables?

What’s the purpose of information hiding?

Why do some subclasses override methods and others don’t?
Encapsulate what is different in behavior

Why do we hide subclasses (e.g., via a factory)?
TTTButton vs. OogaButton vs. Jbutton

Why do we hide classes?
Does PuzzleGui need to know about TTTPlayer?

Software Design 14.4

What about Inheritance?
(see Design Patterns Explained)

Find what varies and encapsulate it
In an instance variable, in a class, in a hierarchy
What is a factory class/hierarchy for?

Use composition/delegation rather than inheritance
Has-a/uses-a can be better than is-a
Consider the WallHuggingRectangleBall class
proliferation problem

Design to interfaces/concepts, not to implementations
When do we use abstract class vs interface?

