CPS 216 Fall 2001

Homework \#4
Due: Thursday, November 29

Problem 1.

How many possible plans are there for an n-way join query $R_{1} \bowtie R_{2} \bowtie \ldots \bowtie R_{n}$, if we use only one type of asymmetric binary join operator in our plans? Your answer should be a closed-form or recurrence formula. Also, compute your answer for $n=7$.

Remember to consider all bushy plans-not just left-deep ones. For example, three possible plans for $n=3$ are shown below. There are a total of 12 plans for $n=3$.

Problem 2.

Consider relations $R(A, B, C), S(C, D), T(D, E)$ with the following statistics:

- $|R|=100 ;\left|\pi_{A} R\right|=100 ;\left|\pi_{B} R\right|=10 ;\left|\pi_{C} R\right|=50 ;$
- $|S|=500 ;\left|\pi_{C} S\right|=30 ;\left|\pi_{D} S\right|=100$;
- $|T|=400 ;\left|\pi_{D} T\right|=400 ;\left|\pi_{E} T\right|=150$.

Estimate the number of the tuples returned by the following queries:
(a) $\sigma_{A}=10 R$
(b) $\sigma_{A}=10$ AND $B={ }^{\prime} \operatorname{Bart}^{\prime} R$
(c) $\sigma_{A}=10$ OR $B={ }^{\prime}$ Bart' $^{\prime} R$
(d) $R \bowtie S$
(e) $R \bowtie S \bowtie T$

Problem 3.

Consider relations Employee(eno, ename, pno, salary) and Project(pno, pname, location, budget), where the key attributes are underlined. Furthermore, Employee.pno references Project.pno. The most common queries on Project use the set of simple predicates \{location = 'RTP', location = 'NYC', budget $<$ 1000 , budget $\geq 3000\}$.
(a) Compute the primary horizontal fragments of Project based on the given set of simple predicates.
(b) Suppose that the horizontal partitioning of Employee is derived from Project. Transform the following SQL query into a relational algebra plan over the fragments, pull up union and join, push down selection and projection, and simplify the plan as much as possible.

```
SELECT ename, pname
FROM Employee, Project
WHERE Employee.pno = Project.pno
AND location = 'RTP' AND budget < 2000;
```


Problem 4.

Consider the general fragment and replication join algorithm discussed in lecture.
Suppose that P sites are available to process $R \bowtie S$. The algorithm partitions R into m fragments $R_{1}, R_{2}, \ldots, R_{m}$ of size $|R| / m$ each, and S into n fragments $S_{1}, S_{2}, \ldots, S_{n}$, of size $|S| / n$ each, where $m \cdot n=P$. Each site receives a copy of R_{i}, a copy of S_{j}, and computes $R_{i} \bowtie S_{j}$ locally. This problem explores the optimal choice of m and n.
(a) If the cost of sending t tuples from one site to another is $c \cdot t$, what is the total communication cost of the algorithm (assuming that the site storing R and S does not participate in join)?
(b) If the cost of computing $R_{i} \bowtie S_{j}$ locally at a site is $k \cdot\left(\left|R_{i}\right|+\left|S_{j}\right|\right)$ (e.g., if we use sort-merge join), what is the optimal choice of m and n ?
(c) If the cost of computing $R_{i} \bowtie S_{j}$ locally at a site is $k \cdot\left|R_{i}\right| \cdot\left|S_{j}\right|$ (e.g., if we use nested-loop join), what is the optimal choice of m and n ?

Problem 5.

This problem explores why semijoin reducers do not work with cyclic joins. Consider an n-way join $R_{1}\left(A_{1}, A_{2}\right) \bowtie R_{2}\left(A_{2}, A_{3}\right) \bowtie \ldots \bowtie R_{n}\left(A_{n}, A_{1}\right)$. Note that R_{n} joins with R_{1} on A_{1}, making this n-way join cyclic. Your job is to construct a database instance in which:

- $\quad R_{i} \neq \varnothing$ for any i.
- $\quad R_{i} \ltimes R_{j}=R_{i}$ for any i and j; that is, pair-wise semijoins cannot reduce anything.
- $\bowtie_{i \neq j} R_{i} \neq \varnothing$ for any j; that is, any $(n-1)$-way join is non-empty. Here $\bowtie_{i \neq j} R_{i}$ is a short hand for $R_{1} \bowtie \ldots \bowtie R_{j-1} \bowtie R_{j+1} \bowtie \ldots \bowtie R_{n}$.
- $\bowtie_{i} R_{i}=\varnothing$; that is, the final n-way join is empty. Here $\bowtie_{i} R_{i}$ is a short hand for R_{1} $\bowtie R_{2} \bowtie \ldots \bowtie R_{n}$.

