+ An Introduction to

<=.CPS 216
Advanced Database Systems

Instructor: Jun Yang
TA: Dazhi Wang
Fall 2001

Course information

* A short survey at the end of this class
» Books
— Required: the “red book”
— Optional: an introductory DBMS textbook
* http://www.cs.duke.edu/courses/fall01/cps216/
— Check the syllabus for required reading before class!
 Courselnfo for announcements, discussion, and
grades
» Duke Honor Code

Course load

» 4 Homeworks (30%)
* Project (30%)

» Midterm (20%)

* Final (20%)

* Present a paper in class and get your lowest
homework grade dropped!

What’s a database system?

« Database: an organized body of related
information

» Database system, DataBase Management System:
a software system that facilitates the creation and
maintenance and use of an electronic database

& Oxford Dictionary

What do you want from a DBMS?

Data | |

/

» Answer queries (questions) about data
» Update data
» And keep data around (persistent)!

An example

Bank database: Each account has an account
number, an owner, a balance, ...

* Query: What’s the balance in Homer Simpson’s
account?
Update: Homer withdraws $100

Persistency: Homer will be pretty upset if his
balance disappears after a power outage

Sounds simple!

» ASCII file, one account per line:

00987-00654#Ned Flanders#2500.00
00123-00456#Homer Simpson#400.00
00142-00857#Montgomery Burns#1000000000.00

Query

» What’s the balance in Homer Simpson’s account?

00987-00654#Ned Flanders#2500.00
00123-00456#Homer Simpson#400.00
00142-00857#Montgomery Burns#1000000000.00

» A simple script:
— Scan through the file
— Look for the line containing “Homer Simpson”
— Print out the balance

Performance problems

 Tens of thousands of accounts are not Homer’s
¢ Keep the accounts sorted by owner name
— Change the script to do binary search
— What happens when a new account is created?
¢ Cluster accounts: Those owned by “A...” go into
file A; those owned by “B...” go into file B; etc.
— Change the script to decide which file to search

— What happens when the query changes to: Which
accounts have 0 balance?

Observations

» Many ways to boost performance by changing the
organization of data

Different ways make sense for different scenarios

Something is wrong
— Access to data is not declarative

— Whenever data is reorganized, we need to reprogram
all applications!

Physical data independence

 Applications should not need to worry about how
data is physically structured and stored

 Applications should work with a logical data
model and declarative query language

* Leave the implementation details and
optimization to DBMS

 The single most important reason behind the
success of DBMS today
— And a Turing Award for E. F. Codd

Solution

* Relational model
— Data is stored in relations (tables)

— Digression: What’s a data model?
« Describes conceptual structuring of data

» Another example: Data is stored as a graph whose nodes
represent cities, edges represent flights

« Relational query languages
— Operations on relations
— Relational algebra, SQL, etc.

Another example

 Account (number, owner, balance, branch_id, ...)
« Branch (branch_id, location, ...)

» Query: Who have accounts with 0 balance
managed by a branch in Springfield?

Before relational “revolution”

“Simplified” CODASYL

Account.balance := 0
FIND Account RECORD BY CALC-KEY
FIND OWNER OF CURRENT Account-Branch SET
IF Branch.location = “Springfield” THEN
PRINT Account.owner

Assume that we can quickly find accounts by balance
Assume there is a link from accounts to branches
Programmer controls “navigation”

What about navigating from branches to accounts?

After relational “revolution”
. SQL

SELECT Account.owner

FROM Account, Branch

WHERE Account.balance = 0

AND Branch.location = “Springfield”
AND Account.branch_id = Branch.id;

Major DBMS today

Oracle

IBM DB2 (from System R, System R*, Starburst)

Microsoft SQL Server

NCR Teradata All re\at'\ona\\.

Sybase
Informix (recently acquired by IBM)

PostgreSQL (from UC Berkeley’s Ingres, Postgres)

Tandem NonStop (acquired by Compaq)
? MySQL

DBMS is multi-user

Example:

get account balance from database;

if balance > amount of withdrawal then
balance = balance - amount of withdrawal;
dispense cash;
store new balance into database;

Homer at ATM1 withdraws $100
Marge at ATM2 withdraws $50

Initial balance = $400, final balance = ?
— Should be $250 no matter who goes first

Final balance = $300

Homer withdraws $100:

read balance; $400

read balance; $400

if balance > amount then

Marge withdraws $50:

balance = balance - amount; $350

write balance; $350
if balance > amount then

balance = balance - amount; $300
write balance; $300

Final balance = $350

Homer withdraws $100: Marge withdraws $50:

read balance; $400
read balance; $400
if balance > amount then
balance = balance - amount; $300
write balance; $300
if balance > amount then
balance = balance - amount; $350
write balance; $350

Concurrency control in DBMS

 Appears similar to concurrent programming
problems?

— But data not main-memory variables
» Appears similar to file system concurrent access?

— Approach taken by MySQL
(fun reading: http://openacs.org/philosophy/why-not-mysgl.html)

— But want to control at much finer granularity
« Or else one withdrawal would lock up all accounts!

20

Recovery in DBMS

» Example: balance transfer
decrement the balance of account X by $100;
increment the balance of account Y by $100;

« Scenario 1: Power goes out after the first
instruction

« Scenario 2: DBMS buffers and updates data in
memory (for efficiency); before they are written
back to disk, power goes out

* Log updates; undo/redo during recovery

21

Summary: modern DBMS features

* Persistent storage of massive amounts of data

* Logical data model and declarative query
language (physical data independence)

* Multi-user concurrent access
« Safety from system failures
* High performance and availability

22

Modern DBMS architecture

Applications
DBMS
—— [

« Many details will be filled in the DBMS box

23

Reminder

* If you already know relational model and
relational algebra, go ahead and read the Codd
paper in red book

» Otherwise, read it after the lecture

24

[N

0 N o O~

Survey

. Are you registered for CPS 216?
. Have you taken any introductory database course

before?

Have you used a DBMS before? (okay okay, Microsoft Access
also counts :-)

. Are you familiar with a B-tree?

. Hash join?

. Outerjoin?

. Lossless join decomposition?

. Do you know why DBMS optimizers care about

inferring A=C from A=B and B=C? &

