Relational Model \& Algebra

CPS 216
Advanced Database Systems

Announcements

- Lecture notes
- "Notes" version (incomplete) available in the morning on the day of lecture
- "Slides" version (complete) available after the lecture
- We are working on installing IBM DB2!
- Help needed
- Good learning experience
- Reminder: check CourseInfo for announcements!

Example

- Schema
- Student (SID integer, name string, age integer, GPA float)
- Course (CID string, title string)
- Enroll (SID integer, CID integer)
- Instance
- \{<142, Bart, 10, 2.3>, <123, Milhouse, 10, 3.1>, ...\}
- $\{<$ CPS 216, Advanced Database Systems>, ... $\}$
- $\{<142$, CPS 216>, <142, CPS 214>, ... $\}$
- Compare to types and variables in a programming language

Selection example

- Students with GPA higher than 3.0

$$
\sigma_{G P A>3.0}(\text { Student })
$$

Projection

- Input: a table R
- Notation: $\pi_{L}(R)$
- L is a list of columns in R
- Purpose: select columns to output
- Output: same rows, but only the columns in L

More on selection

- Selection predicate in general can include any column of R, constants, comparisons such as $=, \leq$, etc., and Boolean connectives \wedge, \vee, and \neg
- Example: straight A students under 18 or over 21

$$
\boldsymbol{\sigma}_{G P A \geq 4.0 \wedge(a g e<18 \vee \text { age }>21)}(\text { Student })
$$

- But you must be able to evaluate the predicate over a single row
- Example: student with the highest GPA?
$\bar{\sigma}_{G P A=\max }$ (student)

Projection example

- IDs and names of all students

$$
\pi_{S I D, \text { name }}(\text { Student })
$$

More on projection

- Duplicate output rows must be removed
- Example: age distribution of students $\pi_{\text {age }}$ (Student)

Join example

- Info about students, plus CIDs of their courses

$$
\text { Student } \triangleright \triangleleft_{\text {Student.SID }=\text { Enroll.SID }} \text { Enroll }
$$

Cross product example

Student \times Enroll

Cross product

- Input: two tables R and S
- Notation: $R \times S$
- Purpose: pairs rows from two tables
- Output: for each row r in R and each row s in S, output a row $r s$ (concatenation of r and s)

Derived operator: join

- Input: two tables R and S
- Notation: $R \triangleright \triangleleft_{p} S$
$-p$ is called a join condition/predicate
- Purpose: related rows from two tables according to some criteria
- Output: for each row r in R and each row s in S, output a row $r s$ (concatenation of r and s) if r and s satisfy p
- Shorthand for $\sigma_{p}(R \times S)$

Derived operator: natural join

- Input: two tables R and S
- Notation: $R \triangleright \triangleleft S$
- Purpose: related rows from two tables, and
- Enforce equality on all common attributes
- Eliminate one copy of common attributes
- Shorthand for $\pi_{L}\left(R \triangleright \triangleleft_{p} S\right)$
- L is the union of the attributes from R and S, with duplicates removed
- p matches all attributes common to R and S

Difference

- Input: two tables R and S
- Notation: $R-S$
$-R$ and S must have identical schema
- Output:
- Has the same schema as R and S
- Contains all rows in R that are not found in S

Union

- Input: two tables R and S
- Notation: $R \cup S$
$-R$ and S must have identical schema
- Output:
- Has the same schema as R and S
- Contains all rows in R and all rows in S, with duplicates eliminated

Derived operator: intersection

- Input: two tables R and S
- Notation: $R \cap S$
$-R$ and S must have identical schema
- Output:
- Has the same schema as R and S
- Contains all rows that are in both R and S
- Shorthand for $R-(R-S)$
- Also equivalent to $S-(S-R)$ and $R \triangleright \triangleleft S$

Renaming

- Input: a table R
- Notation: $\rho_{S}(R)$, or $\rho_{S\left(A_{1}, A_{2}, \ldots\right)}(R)$
- Purpose: rename a table and/or its columns
- Output: a renamed table with the same rows as R
- Used to
- Avoid confusion caused by identical column names
- Create identical columns names for natural joins

Renaming example

- All pairs of (different) students

Summary of core operators

- Selection: $\sigma_{p}(R)$
- Projection: $\pi_{L}(R)$
- Cross product: $R \times S$
- Union: $R \cup S$
- Difference: $R-S$
- Renaming: $\rho_{S\left(A_{1}, A_{2}, \ldots\right)}(R)$
- Doesn't really add to expressive power

An exercise

- CIDs of the courses that Lisa isn't taking

Monotone operators

- If some old output rows must be removed
- Then the operator is non-monotone
- Otherwise the operator is monotone
- That is, old output rows remain "correct" when more rows are added to the input
- Formally, $R \subseteq R^{\prime} \Rightarrow \operatorname{RelOp}(R) \subseteq \operatorname{RelOp}\left(R^{\prime}\right)$

Summary of derived operators

- Join: $R \triangleright \triangleleft_{p} S$
- Natural join: $R \triangleright \triangleleft S$
- Intersection: $R \cap S$
- Many more
- Semi-join, anti-semi-join, quotient, ...

Classification of relational operators

Monotone \checkmark Non-monotone \times

- Selection: $\sigma_{p}(R)$
- Projection: $\pi_{L}(R) \quad \checkmark$
- Cross product: $R \times S \quad \checkmark$
- Union: $R \cup S \quad \checkmark$
- Difference: $R-S \quad \mathbf{x}$ (Not with respect to S)

Why is "-" needed for highest GPA?

- Composition of monotone operators produces a monotone query
- Old output rows remain "correct" when more rows are added to the input
- Highest-GPA query is non-monotone
- Current highest GPA is 4.3
- Add another GPA 4.5
- Old answer is invalidated
- So it must use difference!

Why is r.a. a good query language?

- Declarative?
- Yes, compared to older languages like CODASYL
- But operators are inherently procedural
- Simple
- A small set of core operators whose semantics are easy to grasp
- Complete?
- With respect to what?

Turing machine?

- Relational algebra has no recursion
- Example of something not expressible in relational algebra: Given relation Parent (parent, child), who are Bart's ancestors?
- Why not recursion?
- Optimization becomes undecidable
- You can always implement it at the application level
- Recursion is added to SQL nonetheless

Why do we need core operator X?

- Difference
- The only non-monotone operator
- Cross product
- The only operator that allows you to add columns
- Union
- The only operator that allows you to add rows?
- A more rigorous proof?
- Selection? Projection?
- Homework problem :-)

Relational calculus

- $\{\operatorname{s.SID} \mid$ Student $(s) \wedge$
$\neg\left(\exists s^{\prime}:\right.$ Student $\left.\left.\left(s^{\prime}\right) \wedge s . G P A<s^{\prime} . G P A\right)\right\}$
- Relational algebra = "safe" relational calculus
- Every query expressible in relational algebra is also expressive as a safe relational calculus formula
- And vice versa
- Example of an unsafe relational calculus query
$\{$ s.name $\mid \neg \operatorname{Student}(s)\}$
- Can't evaluate this query just by looking at the database

Next time

- How to design a relational database (and the theory behind it)
- No required reading, but for new comers to the field, reading related sections in a textbook is recommended
- See Tentative Syllabus on course Web page

