Relational Model & Algebra

CPS 216
Advanced Database Systems

Announcements

e |_ecture notes

— “Notes” version (incomplete) available in the morning
on the day of lecture

— “Slides” version (complete) available after the lecture
» We are working on installing IBM DB2!

— Help needed

— Good learning experience

» Reminder: check Courselnfo for announcements!

Relational data model

* A database is a collection of relations (or tables)
« Each relation has a list of attributes (or columns)
— Set-valued attributes not allowed
« Each attribute has a domain (or type)
« Each relation contains a set of tuples (or rows)
— Duplicates not allowed

Simplicity is a virtue!

Example
Student Course
SID name age | GPA CID title
142 Bart 10 23 CPS 216| Advanced Database Systems
123 | Milhouse | 10 3.1 CPS 130 Analysis of Algorithms
857 Lisa 8 4.3 CPS 214 Computer Networks
456 Ralph 8 223

Enroll
. SID CiD
Ordering of rows doesn’t matter > cps 216
(even though the output is 142 | CPS 214

always in some order) 123 | CPS 216
857 CPS 216

857 CPS 130
456 CPS 214

Schema versus instance

» Schema (metadata)
— Specification of how data is to be structured logically
— Defined at set-up
— Rarely changes
* Instance
— Content
— Changes rapidly, but always conforms to the schema

» Compare to types and variables in a programming
language

Example

» Schema
— Student (SID integer, name string, age integer, GPA float)
— Course (CID string, title string)
— Enroll (SID integer, CID integer)

* Instance
- { <142, Bart, 10, 2.3>, <123, Milhouse, 10, 3.1>, ...}
— { <CPS 216, Advanced Database Systems>, ...}
- { <142, CPS 216>, <142, CPS 214>, ..}

Relational algebra operators

RelOp

« Core set of operators:

— Selection, projection, cross product, union, difference, and
renaming

 Additional, derived operators:
- Join, natural join, intersection, etc.

Selection

Input: a table R

Notation: J,(R)

— pis called a selection condition/predicate
Purpose: filter rows according to some criteria

* Output: same columns as R, but only rows of R
that satisfy p

Selection example
* Students with GPA higher than 3.0
Ogpn > 30 (Student)

SID name age | GPA SID name GPA

456 | Ralph 8 | 23

142 Bat | 10 | 23
123 | Milhouse | 10 | 3.1 Oconsz0)*] 123 | Mihouse | 10 | 3.1
857 | Lisa | 8 | 43 857 | Lisa | 8 | 43

More on selection

* Selection predicate in general can include any
column of R, constants, comparisons such as =, <,
etc., and Boolean connectives [J, (J, and =
— Example: straight A students under 18 or over 21

Ospas a0 D(age < 18 Nage > 21) (Student)
 But you must be able to evaluate the predicate
over a single row
— Example: student with the highest GPA?

GPA=

Projection

Input: a table R

Notation: 7T (R)
— L isalist of columns in R

* Purpose: select columns to output
 Output: same rows, but only the columns in L

Projection example
* |IDs and names of all students

ITSID, name (Student)

SID name age | GPA SID name

142 Bart 10 23 142 Bart
123 | Milhouse | 10 3.1 123 | Milhouse
857 Lisa 8 4.3 857 Lisa

456 | Ralph 8 | 23 456 | Ralph

More on projection

* Duplicate output rows must be removed
— Example: age distribution of students
7T, (Student)

SID name age | GPA

142 Bart 10 223
123 | Mihouse | 10 3.1
857 Lisa 8 4.3

456 | Ralph 8 | 23

Cross product

Input: two tables R and S
Notation: R x S
Purpose: pairs rows from two tables

Output: for each row r in R and each row s in S,
output a row rs (concatenation of r and s)

Cross product example

Student x Enroll

SID name age | GPA SID CID
142 Bart 10 2.3 / 142 CPS 216
123 | Milhouse | 10 3.1 142 CPS 214

123 | CPS 216

SID name age | GPA SID CID

142 Bart 10 23 142 | CPS 216
142 Bart 10 2.3 142 | CPS 214
142 Bart 10 23 123 | CPS 216
123 | Milhouse 10 Skl 142 | CPS 216
123 | Milhouse | 10 3.1 142 | CPS 214
123 | Milhouse 10 Sl 123 | CPS 216

Derived operator: join

* Input: two tables R and S
* Notation: R ><; S
— pis called a join condition/predicate

* Purpose: related rows from two tables according
to some criteria

* Output: for each row r in R and each row s in S,
output a row rs (concatenation of r and s) if r and
s satisfy p

» Shorthand for O, (R x S)

Join example

* Info about students, plus CIDs of their courses
Student ><1 g gent 10 = Enrannsip ENTFOI

SID name age | GPA / SID Cib
142 CPS 216

142 Bart 10 2.3
123 | Milhouse | 10 £Ldl 142 | CPS 214
oo 123 | CPS 216

>
tudent.SID =
Enroll.SID,

SID name age | GPA SID CID

142 Bart 10 2.3 142 | CPS 216
142

123 | Milhouse | 10 b 123 | CPS 216

Derived operator: natural join

* Input: two tables R and S

 Notation: R >« S

* Purpose: related rows from two tables, and
— Enforce equality on all common attributes
— Eliminate one copy of common attributes

« Shorthand for 77 (R ><, S)

— L is the union of the attributes from R and S, with
duplicates removed

— p matches all attributes common to R and S

Natural join example

Student >< Enroll = 77, (Student <, Enroll)

SID, name, age, GPA, cIp (SEUTENt >< y4ent i = Enronsip ENFOIN)

SID [name [age | GPA SID cID
142 | Bart 10 | 23 — 142 | CPS 216

123 | Milhouse | 10 3.1 142 CPS 214

123 | CPS 216

SID | name [age | GPA
142
142

123 | Milhouse

Union

* Input: two tables R and S
* Notation: RO S

— R and S must have identical schema
¢ Output:

— Has the same schema as R and S

— Contains all rows in R and all rows in S, with
duplicates eliminated

Difference

* Input: two tables R and S
* Notation: R — S
— R and S must have identical schema
e Output:
— Has the same schema as R and S
— Contains all rows in R that are not found in S

21

Derived operator: intersection

* Input: two tables R and S
* Notation: R n' S
— R and S must have identical schema
e Output:
— Has the same schema as R and S
— Contains all rows that are in both R and S

« Shorthand forR = (R - S)
* Also equivalentto S—(S-R) and R><'S

Renaming

* Input: atable R

* Notation: O5(R), 0r Oga, 4, y(R)
 Purpose: rename a table and/or its columns
 Output: a renamed table with the same rows as R
* Used to

— Avoid confusion caused by identical column names
— Create identical columns names for natural joins

23

Renaming example

« All pairs of (different) students
Student >, Student
Student.SID < > Student.SIDx
> <1 sip1<>sID2

pStudentl (SID1, namel, agel, GPAL) pStudentZ (SID2, name2, age2, GPA2)

Student Student

Summary of core operators

» Selection: T, (R)
* Projection: 7T (R)
 Cross product: R x S
e Union:ROS
« Difference:R - S
» Renaming: pS(AhAzy_“)(R)
— Doesn’t really add to expressive power

25

Summary of derived operators

* Join: R >, S
Natural join: R ><' S
Intersection: R n' S

* Many more
— Semi-join, anti-semi-join, quotient, ...

An exercise
* CIDs of the courses that Lisa isn’t taking
\ﬂ' CIDs of the courses
CID that Lisa is taking

All CIDs
Who’s Lisa’?/D N
77|E:|D 0:1amelz “Lisa"
Course Student Enroll

27

A trickier exercise

» Who has the highest GPA?
— Who does not have the highest GPA?
— Whose GPA is lower than somebody else’s?

~J

Student1.SID

A deeper question:
When (and why)
is “=" required?,

> Student1.GPA < Student2.GPA

IFtudentl,Sl D IOStudentl IOStLIldentZ
Student Student Student

28

Monotone operators

What happens
RelOp to the output?
Add more rows

to the input...

* If some old output rows must be removed
— Then the operator is non-monotone
« Otherwise the operator is monotone

— That is, old output rows remain “correct” when more
rows are added to the input

— Formally, R O R’ = RelOp(R) O RelOp(R’)

29

Classification of relational operators

Monotone v Non-monotone x

+ Selection: T, (R) v

e Projection: 7T (R) v

e Cross product: R xS v

e Union:ROS v

o Difference:R —-S x (Not with respect to S)

Why is “~" needed for highest GPA?

» Composition of monotone operators produces a
monotone query

— Old output rows remain “correct” when more rows are
added to the input

* Highest-GPA query is hon-monotone
— Current highest GPA is 4.3
— Add another GPA 4.5
— Old answer is invalidated

* So it must use difference!

31

Why do we need core operator X?

« Difference
— The only non-monotone operator

« Cross product

— The only operator that allows you to add columns
Union

— The only operator that allows you to add rows?

— A more rigorous proof?
Selection? Projection?

— Homework problem :-)

Why is r.a. a good query language?

» Declarative?

— Yes, compared to older languages like CODASYL
— But operators are inherently procedural
« Simple

— A small set of core operators whose semantics are
easy to grasp

» Complete?
— With respect to what?

33

Relational calculus

o {s.SID | Student (s) O
= (0k’: Student (s°) 0s.GPA <s’.GPA) }
* Relational algebra = “safe” relational calculus

— Every query expressible in relational algebra is also
expressive as a safe relational calculus formula

— And vice versa

» Example of an unsafe relational calculus query
{ s.name | - Student (s) }

— Can’t evaluate this query just by looking at the
database

Turing machine?

* Relational algebra has no recursion

— Example of something not expressible in relational
algebra: Given relation Parent (parent, child), who
are Bart’s ancestors?

» Why not recursion?
— Optimization becomes undecidable

- You can always implement it at the application level
— Recursion is added to SQL nonetheless

35

Next time

» How to design a relational database (and the
theory behind it)

 No required reading, but for new comers to the
field, reading related sections in a textbook is
recommended

— See Tentative Syllabus on course Web page

