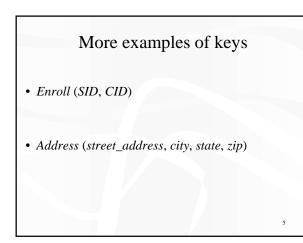
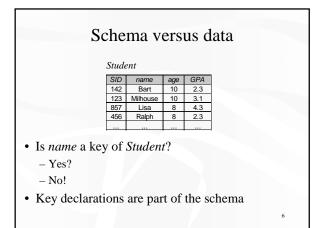
Relational Database Design

CPS 216 Advanced Database Systems

Announcements


- Homework #1 out today
 - Due next Thursday in class
- Sign up to present a research paper
 - Sign-up sheet available in my office (D327) during my office hours
 - First-come, first-serve
 - Participation is voluntary
 - Allows you to drop your lowest homework grade
 - In groups of 2-4


Relational model: a review

- A database is a collection of relations (or tables)
- Each relation has a list of attributes (or columns)
- Each attribute has a domain (or type)
- Each relation contains a set of tuples (or rows)

Keys

- A set of attributes K is a key for a relation R if
 In no instance of R will two different tuples agree on all attributes of K
 - That is, *K* is a "tuple identifier"
 - No proper subset of K satisfies the above conditionThat is, K is minimal
- Example: Student (SID, name, age, GPA)

Usage of keys

- More constraints on data, fewer mistakes
- Look up a row by its key value
- Many selection conditions are "key = value"
- "Pointers"
 - Example: Enroll (SID, CID)

 Many join conditions are "key = key value stored in another table"

Functional dependencies

- A functional dependency (FD) has the form $X \rightarrow Y$, where *X* and *Y* are sets of attributes in a relation *R*
- *X*→*Y* means that whenever two tuple in *R* agree on all the attributes of *X*, they must also agree on all attributes of *Y*

FD examples

Address (street_address, city, state, zip)

Keys redefined using FDs

A set of attributes K is a key for a relation R if

– That is, K is a "super key"

•

- No proper subset of *K* satisfies the above condition
 - That is, K is minimal

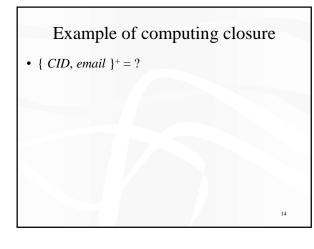
Reasoning with FDs

Given a relation R and set of FDs F

- Does another FD follow from *F* ?
 - Are some of the FDs in *F* redundant (because they follow from the others)?
- Is K a key of R?
 - What are all the keys of *R*?

Attribute closure

- Given *R*, a set of FDs *F* that holds in *R*, and a set of attributes *Z* in *R*: The closure of *Z* with respect to *F* (denoted *Z*⁺) is the set of all attributes functionally determined by *Z*
- Algorithm for computing the closure


12

10

A more complex example

StudentGrade (SID, name, email, CID, grade)

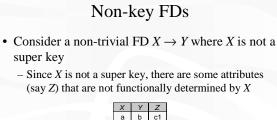
- $SID \rightarrow name, email$
- $email \rightarrow SID$
- SID, CID \rightarrow grade
- Not a good design, and we will see why later $$_{\rm l3}$$

Using attribute closure

15

Given a relation R and set of FDs F

- Does another FD $X \rightarrow Y$ follow from F?
- Is K a key of R?

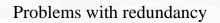

Rules of FDs

- Armstrong's axioms
 - Reflexivity: If $Y \subseteq X$, then $X \to Y$
 - Augmentation: If $X \to Y$, then $XZ \to YZ$ for any Z
 - Transitivity: If $X \to Y$ and $Y \to Z$, then $X \to Z$
- Rules derived from axioms
 - Splitting: If $X \to YZ$, then $X \to Y$ and $X \to Z$
 - Combining: If $X \to Y$ and $X \to Z$, then $X \to YZ$

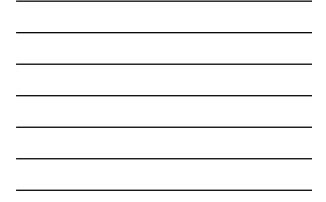
Using rules of FDs

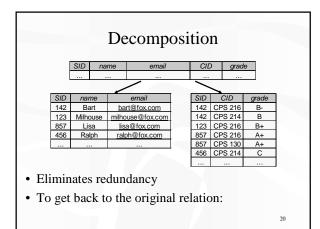
Given a relation R and set of FDs F

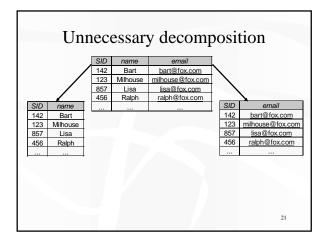
- Does another FD X → Y follow from F?
 Use the rules to come up with a proof
 - Example: *CID*, *email* \rightarrow *grade*?



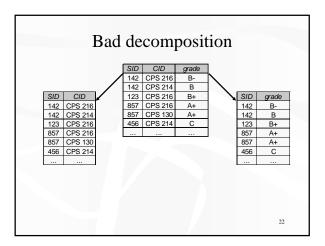
The fact that "a" is always associated with "b" is recorded in multiple rows: redundancy!


18

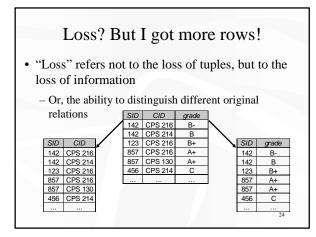

16


StudentGrade (SID, name, email, CID, grade) SID \rightarrow name, email

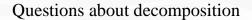
SID	name	email	CID	grade
142	Bart	bart@fox.com	CPS 216	B-
142	Bart	bart@fox.com	CPS 214	В
123	Milhouse	milhouse@fox.com	CPS 216	B+
857	Lisa	lisa@fox.com	CPS 216	A+
857	Lisa	lisa@fox.com	CPS 130	A+
456	Ralph	ralph@fox.com	CPS 214	С



Lossless join decomposition


 Suppose that *R* is decomposed into *S* and *T* attrs(*R*) = attrs(*S*) ∪ attrs(*T*) *S* = *T*_{attrs(S)}(*R*)

$$T = \pi_{\operatorname{attrs}(T)}(R)$$

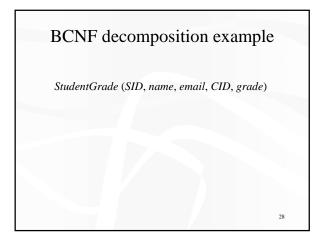

• It is a lossless join decomposition if, given constraints such as FDs, we can guarantee

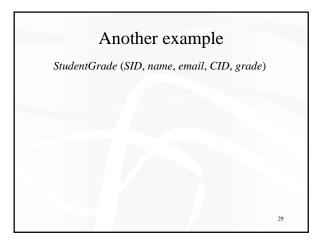
23

 $R = S \bowtie T$

- When to decompose
- How to come up with a correct decomposition

An answer: BCNF


- A relation *R* is in Boyce-Codd Normal Form if
 - For every non-trivial FD $X \rightarrow Y$ in R, X is a super key
 - That is, all FDs follow from "key \rightarrow other attributes"
- When to decompose
 - As long as some relation is not in BCNF
- How to come up with a correct decomposition
 - Always decompose on a BCNF violation
 - Then it's a lossless join decomposition!


BCNF decomposition algorithm

- Find a BNCF violation
 - That is, a non-trivial FD $X \rightarrow Y$ in R where X is not a super key of R
- Decompose R into R_1 and R_2 , where
 - $-R_1$ has attributes $X \cup Y$
 - R_2 has attributes $X \cup Z$ (Z contains all attributes of R that are in neither X nor Y)
- Repeat until all relations are in BNCF

27

25

Why is BCNF decomposition lossless

- Given non-trivial *X* → *Y* in *R* where *X* is not a super key of *R*, need to prove:
 - Anything we project always comes back in the join:

$$R \subseteq \mathcal{H}_{XY}(R) \bowtie \mathcal{H}_{XZ}(R)$$

- Sure; and it doesn't depend on the FD
- Anything that comes back in the join must be in the original relation:

 $R \supseteq \pi_{XY}(R) \bowtie \pi_{XZ}(R)$

Yet another example

- Address (street_address, city, state, zip) – street_address, city, state → zip
- $-zip \rightarrow city, state$ • Keys
- 110 9 8
- BCNF?

To decompose, or not to decompose

Address₁ (zip, city, state) Address₂ (street_address, zip)

- FDs in Address₁
- FDs in Address₂

"Elegant" solution

- Define the problem away!
- R is in Third Normal Form (3NF) if for every
 - non-trivial FD $X \rightarrow A$, either
 - -X is super key of R, or
- -A is a member of at least one key of R
- So Address is already in 3NF
- Tradeoff

31

Recap

- Identifying tuples: keys
- Generalizing the key concept: FDs
- Non-key FDs: redundancy
- Avoiding redundancy: BCNF decomposition
- Preserving FDs: 3NF

What's next

34

- Another kind of dependency and normal form
- A comprehensive design example
- SQL basics