
1

Relational Database Design

CPS 216
Advanced Database Systems

2

Announcements
• Homework #1 out today

– Due next Thursday in class
• Sign up to present a research paper

– Sign-up sheet available in my office (D327) during
my office hours

• First-come, first-serve
– Participation is voluntary

• Allows you to drop your lowest homework grade
– In groups of 2-4

3

Relational model: a review

• A database is a collection of relations (or tables)
• Each relation has a list of attributes (or columns)
• Each attribute has a domain (or type)
• Each relation contains a set of tuples (or rows)

4

Keys
• A set of attributes K is a key for a relation R if

– In no instance of R will two different tuples agree on
all attributes of K

• That is, K is a “tuple identifier”
– No proper subset of K satisfies the above condition

• That is, K is minimal

• Example: Student (SID, name, age, GPA)
– SID is a key of Student
– {SID, name} is not a key (not minimal)

5

Schema versus data

SID name age GPA
142 Bart 10 2.3
123 Milhouse 10 3.1
857 Lisa 8 4.3
456 Ralph 8 2.3
...

Student

• Is name a key of Student?
– Yes? Seems reasonable for this instance
– No! Student names are not unique in general

• Key declarations are part of the schema
6

More examples of keys

• Enroll (SID, CID)
– {SID, CID}

• Address (street_address, city, state, zip)
– {street_address, city, state}
– {street_address, zip}

2

7

Usage of keys
• More constraints on data, fewer mistakes
• Look up a row by its key value

– Many selection conditions are “key = value”
• “Pointers”

– Example: Enroll (SID, CID)
• SID is a key of Student
• CID is a key of Course
• Enroll “links” a Student row with a Course row

– Many join conditions are “key = key value stored in
another table”

8

Functional dependencies
• A functional dependency (FD) has the form

X→Y, where X and Y are sets of attributes in a
relation R

• X→Y means that whenever two tuple in R agree
on all the attributes of X, they must also agree on
all attributes of Y

X Y Z
a b c
a ? ?
...

X Y Z
a b c
a b ?
...

Must be “�” Could be anything

9

FD examples
Address (street_address, city, state, zip)
• street_address, city, state → zip
• zip → city, state
• zip, state → zip?

– Trivial: LHS ⊇ RHS
• zip → state, zip?

– Non-trivial, but not completely: LHS ∩ RHS ≠ ∅
�Completely non-trivial FD: LHS ∩ RHS = ∅

10

Keys redefined using FDs

A set of attributes K is a key for a relation R if
• K → all (other) attributes of R

– That is, K is a “super key”
• No proper subset of K satisfies the above

condition
– That is, K is minimal

11

Reasoning with FDs

Given a relation R and set of FDs FFFF
• Does another FD follow from FFFF ?

– Are some of the FDs in FFFF redundant (because they
follow from the others)?

• Is K a key of R?
– What are all the keys of R?

12

Attribute closure
• Given R, a set of FDs FFFF that holds in R, and a set

of attributes Z in R: The closure of Z with respect
to FFFF (denoted Z+) is the set of all attributes
functionally determined by Z

• Algorithm for computing the closure
– Start with Z
– If X → Y is in FFFF and X is already in the closure, then

also add Y to the closure
– Repeat until you can’t add anything more

3

13

A more complex example

StudentGrade (SID, name, email, CID, grade)

• SID → name, email
• email → SID
• SID, CID → grade

• Not a good design, and we will see why later
14

Example of computing closure
• { CID, email }+ = ?
• email → SID

– Add SID; closure is now { CID, email, SID }
• SID → name, email

– Add name and email; closure is now { CID, email,
SID, name, email }

• SID, CID → grade
– Add grade; closure is now all the attributes in

StudentGrade

15

Using attribute closure
Given a relation R and set of FDs FFFF

• Does another FD X → Y follow from FFFF ?
– Compute X+ with respect to FFFF

– If Y ⊆ X+, then X → Y follow from FFFF

• Is K a key of R?
– Computer K+ with respect to FFFF
– If K+ contains all the attributes of R, K is a super key
– Still need to verify that K is minimal (how?)

16

Rules of FDs
• Armstrong’s axioms

– Reflexivity: If Y ⊆ X, then X → Y
– Augmentation: If X → Y, then XZ → YZ for any Z
– Transitivity: If X → Y and Y → Z, then X → Z

• Rules derived from axioms
– Splitting: If X → YZ, then X → Y and X → Z
– Combining: If X → Y and X → Z, then X → YZ

17

Using rules of FDs
Given a relation R and set of FDs FFFF

• Does another FD X → Y follow from FFFF ?
– Use the rules to come up with a proof
– Example: CID, email → grade?

email → SID (given in FFFF)
CID, email → CID, SID (augmentation)
SID, CID → grade (given in FFFF)
CID, email → grade (transitivity)

18

Non-key FDs
• Consider a non-trivial FD X → Y where X is not a

super key
– Since X is not a super key, there are some attributes

(say Z) that are not functionally determined by X
X Y Z
a b c1
a b c2
...

The fact that “�” is always associated with “�”
is recorded in multiple rows: redundancy!

4

19

Problems with redundancy
StudentGrade (SID, name, email, CID, grade)
SID → name, email

• Wastes space
• Potential inconsistencies (update anomaly)

SID name email CID grade
142 Bart bart@fox.com CPS 216 B-
142 Bart bart@fox.com CPS 214 B
123 Milhouse milhouse@fox.com CPS 216 B+
857 Lisa lisa@fox.com CPS 216 A+
857 Lisa lisa@fox.com CPS 130 A+
456 Ralph ralph@fox.com CPS 214 C
... …

20

Decomposition

• Eliminates redundancy
• To get back to the original relation:

SID name email CID grade
... …

SID name email
142 Bart bart@fox.com
123 Milhouse milhouse@fox.com
857 Lisa lisa@fox.com
456 Ralph ralph@fox.com
...

SID CID grade
142 CPS 216 B-
142 CPS 214 B
123 CPS 216 B+
857 CPS 216 A+
857 CPS 130 A+
456 CPS 214 C
... ... …

�

21

Unnecessary decomposition

• Fine: join returns the original relation
• Unnecessary: now SID is stored twice!

SID name email
142 Bart bart@fox.com
123 Milhouse milhouse@fox.com
857 Lisa lisa@fox.com
456 Ralph ralph@fox.com
...SID name

142 Bart
123 Milhouse
857 Lisa
456 Ralph
... ...

SID email
142 bart@fox.com
123 milhouse@fox.com
857 lisa@fox.com
456 ralph@fox.com
... ...

22

Bad decomposition

• Association between CID and grade is lost
• Join returns more rows than the original relation

SID CID grade
142 CPS 216 B-
142 CPS 214 B
123 CPS 216 B+
857 CPS 216 A+
857 CPS 130 A+
456 CPS 214 C
... ... …

SID CID
142 CPS 216
142 CPS 214
123 CPS 216
857 CPS 216
857 CPS 130
456 CPS 214
... ...

SID grade
142 B-
142 B
123 B+
857 A+
857 A+
456 C
... …

23

Lossless join decomposition
• Suppose that R is decomposed into S and T

attrs(R) = attrs(S) ∪ attrs(T)
S = πattrs(S) (R)
T = πattrs(T) (R)

• It is a lossless join decomposition if, given
constraints such as FDs, we can guarantee
R = S � T

24

Loss? But I got more rows!
• “Loss” refers not to the loss of tuples, but to the

loss of information
– Or, the ability to distinguish different original

relations SID CID grade
142 CPS 216 B-
142 CPS 214 B
123 CPS 216 B+
857 CPS 216 A+
857 CPS 130 A+
456 CPS 214 C
... ... …

SID CID
142 CPS 216
142 CPS 214
123 CPS 216
857 CPS 216
857 CPS 130
456 CPS 214
... ...

SID grade
142 B-
142 B
123 B+
857 A+
857 A+
456 C
... …

SID CID grade
142 CPS 216 B
142 CPS 214 B-
123 CPS 216 B+
857 CPS 216 A+
857 CPS 130 A+
456 CPS 214 C
... ... …

5

25

Questions about decomposition

• When to decompose

• How to come up with a correct decomposition

26

An answer: BCNF
• A relation R is in Boyce-Codd Normal Form if

– For every non-trivial FD X → Y in R, X is a super key
– That is, all FDs follow from “key → other attributes”

• When to decompose
– As long as some relation is not in BCNF

• How to come up with a correct decomposition
– Always decompose on a BCNF violation
– Then it’s a lossless join decomposition!

27

BCNF decomposition algorithm
• Find a BNCF violation

– That is, a non-trivial FD X → Y in R where X is not a
super key of R

• Decompose R into R1 and R2, where
– R1 has attributes X ∪ Y
– R2 has attributes X ∪ Z (Z contains all attributes of R

that are in neither X nor Y)
• Repeat until all relations are in BNCF

28

BCNF decomposition example

StudentGrade (SID, name, email, CID, grade)
BCNF violation: SID → name, email

Student (SID, name, email) Grade (SID, CID, grade)
BCNF BCNF

29

Another example
StudentGrade (SID, name, email, CID, grade)

BCNF violation: email → SID

StudentID (email, SID)
StudentGrade’ (email, name, CID, grade)BCNF

BCNF violation: email → name

StudentName (email, name)
Grade (email, CID, grade)BCNF

BCNF
30

Why is BCNF decomposition lossless
• Given non-trivial X → Y in R where X is not a

super key of R, need to prove:
– Anything we project always comes back in the join:

R ⊆ πXY (R) �πXZ (R)
• Sure; and it doesn’t depend on the FD

– Anything that comes back in the join must be in the
original relation:

R ⊇ πXY (R) �πXZ (R)

6

31

Yet another example
• Address (street_address, city, state, zip)

– street_address, city, state → zip
– zip → city, state

• Keys
– {street_address, city, state}
– {street_address, zip}

• BCNF?
– Violation: zip → city, state

32

To decompose, or not to decompose
Address1 (zip, city, state)
Address2 (street_address, zip)
• FDs in Address1

– zip → city, state
• FDs in Address2

– None!
• Hey, where is street_address, city, state → zip?

– Cannot check it without joining Address1 and
Address2 back together

33

“Elegant” solution
• Define the problem away!
• R is in Third Normal Form (3NF) if for every

non-trivial FD X → A, either
– X is super key of R, or
– A is a member of at least one key of R

• So Address is already in 3NF
• Tradeoff:

– Can check all FDs in the decomposed relations
– Might have some redundancy due to FDs

34

Recap

• Identifying tuples: keys
• Generalizing the key concept: FDs
• Non-key FDs: redundancy
• Avoiding redundancy: BCNF decomposition
• Preserving FDs: 3NF

35

What’s next

• Another kind of dependency and normal form

• A comprehensive design example

• SQL basics

