

Usage of keys

- · More constraints on data, fewer mistakes
- Look up a row by its key value
- Many selection conditions are "key = value"
- "Pointers"
 - Example: Enroll (SID, CID)
 - SID is a key of Student
 - CID is a key of Course
 - *Enroll* "links" a *Student* row with a *Course* row
 - Many join conditions are "key = key value stored in another table"

Functional dependencies

- A functional dependency (FD) has the form $X \rightarrow Y$, where X and Y are sets of attributes in a relation R
- *X*→*Y* means that whenever two tuple in *R* agree on all the attributes of *X*, they must also agree on all attributes of *Y*

FD examples

Address (street_address, city, state, zip)

- street_address, city, state \rightarrow zip
- $zip \rightarrow city$, state
- *zip*, *state* \rightarrow *zip*?
- Trivial: LHS ⊇ RHS
- $zip \rightarrow state, zip?$

– Non-trivial, but not completely: LHS \cap RHS $\neq \emptyset$

Completely non-trivial FD: LHS \cap RHS = \emptyset

Keys redefined using FDs

A set of attributes K is a key for a relation R if

- *K*→ all (other) attributes of *R* That is, *K* is a "super key"
- No proper subset of *K* satisfies the above condition
 - That is, K is minimal

Reasoning with FDs

Given a relation R and set of FDs F

- Does another FD follow from *F* ?
 - Are some of the FDs in *F* redundant (because they follow from the others)?
- Is K a key of R?
 - What are all the keys of *R*?

11

A more complex example

StudentGrade (SID, name, email, CID, grade)

- $SID \rightarrow name, email$
- $email \rightarrow SID$
- SID, CID \rightarrow grade
- Not a good design, and we will see why later

13

15

17

Example of computing closure

- { *CID*, *email* }⁺ = ?
- $email \rightarrow SID$
 - Add SID; closure is now { CID, email, SID }
- SID → name, email
 Add name and email; closure is now { CID, email, SID, name, email }
- SID, CID → grade
 Add grade; closure is now all the attributes in StudentGrade

14

16

Using attribute closure

Given a relation R and set of FDs F

- Does another FD $X \rightarrow Y$ follow from F ?
- Compute X^+ with respect to \boldsymbol{F}
- If $Y \subseteq X^+$, then $X \to Y$ follow from \boldsymbol{F}
- Is K a key of R?
 - Computer K^+ with respect to \boldsymbol{F}
 - If K^+ contains all the attributes of R, K is a super key
 - Still need to verify that K is minimal (how?)

Rules of FDs

- Armstrong's axioms
 - Reflexivity: If $Y \subseteq X$, then $X \to Y$
 - Augmentation: If $X \to Y$, then $XZ \to YZ$ for any Z
 - Transitivity: If $X \to Y$ and $Y \to Z$, then $X \to Z$
- Rules derived from axioms
 - Splitting: If $X \to YZ$, then $X \to Y$ and $X \to Z$
 - Combining: If $X \to Y$ and $X \to Z$, then $X \to YZ$

Using rules of FDs

Given a relation R and set of FDs F

- Does another FD $X \to Y$ follow from F?
- Use the rules to come up with a proof
- Example: *CID*, *email* \rightarrow *grade*?
 - *email* \rightarrow *SID* (given in **F**)
 - $CID, email \rightarrow CID, SID$ (augmentation)
 - SID, $CID \rightarrow grade$ (given in F) CID, email $\rightarrow grade$ (transitivity)

 Non-key FDs

 • Consider a non-trivial FD X → Y where X is not a super key, there are some attributes (say Z) that are not functionally determined by X

 • Diace X is not a super key, there are some attributes (say Z) that are not functionally determined by X

 • Diace X is not a super key, there are some attributes (say Z) that are not functionally determined by X

 • Diace X is not a super key, there are some attributes (say Z) that are not functionally determined by X

 • Diace X is not a super key, there are some attributes (say Z) that are not functionally determined by X

 • Diace X is not a super key, there are some attributes (say Z) that are not functionally determined by X

 • Diace X is not a super key, there are some attributes (say Z) that are not functionally determined by X

 • Diace X is not a super key, there are some attributes (say Z) that are not functionally determined by X

 • Diace X is not a super key, there are some attributes (say Z) that are not functionally determined by X

 • Diace X is not a super key, there are some attributes (say Z) that are not functionally determined by X

 • Diace X is not a super key, there are some attributes (say Z) that are not functionally determined by X

 • Diace X is not a super key, there are some attributes (say Z) that are not functionally determined by X

 • Diace X is not a super key, there are some attributes (say X) that are not functionally determined by X

 • Diace X is not a super key, there are some attributes (say X) that are not functionaly that are not functionally t

An answer: BCNF

- A relation *R* is in Boyce-Codd Normal Form if
 - For every non-trivial FD $X \rightarrow Y$ in R, X is a super key
 - That is, all FDs follow from "key \rightarrow other attributes"

· When to decompose

- As long as some relation is not in BCNF
- How to come up with a correct decomposition

26

- Always decompose on a BCNF violation
- Then it's a lossless join decomposition!

BCNF decomposition algorithm

- Find a BNCF violation
 - That is, a non-trivial FD $X \rightarrow Y$ in R where X is not a super key of R
- Decompose R into R_1 and R_2 , where
 - $-R_1$ has attributes $X \cup Y$
 - R_2 has attributes $X \cup Z$ (Z contains all attributes of R that are in neither X nor Y)

27

• Repeat until all relations are in BNCF

Yet another example

- Address (street_address, city, state, zip) – street_address, city, state → zip
- $-zip \rightarrow city, state$
- Keys
 - {street_address, city, state}
 - {street_address, zip}
- BCNF?
 - Violation: $zip \rightarrow city$, state

To decompose, or not to decompose

Address₁ (zip, city, state)

Address₂ (street_address, zip)

- FDs in Address₁ $-zip \rightarrow city$, state
- FDs in Address₂
 - None!

31

33

35

Hey, where is *street_address*, *city*, *state* → *zip*?
 Cannot check it without joining *Address*₁ and *Address*₂ back together

"Elegant" solution

- Define the problem away!
- *R* is in Third Normal Form (3NF) if for every non-trivial FD $X \rightarrow A$, either
 - -X is super key of R, or
 - -A is a member of at least one key of R
- So Address is already in 3NF
- Tradeoff:
 - Can check all FDs in the decomposed relations
 - Might have some redundancy due to FDs

Recap

- Identifying tuples: keys
- Generalizing the key concept: FDs
- Non-key FDs: redundancy
- Avoiding redundancy: BCNF decomposition

34

• Preserving FDs: 3NF

What's next

- Another kind of dependency and normal form
- A comprehensive design example
- SQL basics