Relational Database Design

CPS 216
Advanced Database Systems

Announcements

- Homework \#1 out today
- Due next Thursday in class
- Sign up to present a research paper
- Sign-up sheet available in my office (D327) during my office hours
- First-come, first-serve
- Participation is voluntary
- Allows you to drop your lowest homework grade
- In groups of 2-4

Relational model: a review

- A database is a collection of relations (or tables)
- Each relation has a list of attributes (or columns)
- Each attribute has a domain (or type)
- Each relation contains a set of tuples (or rows)

Schema versus data

Student

SID	name	age	GPA
142	Bart	10	2.3
123	Milhouse	10	3.1
857	Lisa	8	4.3
456	Ralph	8	2.3
\ldots	\ldots	\ldots	\ldots

- Is name a key of Student?
- Yes? Seems reasonable for this instance
- No! Student names are not unique in general
- Key declarations are part of the schema

Keys

- A set of attributes K is a key for a relation R if
- In no instance of R will two different tuples agree on all attributes of K
- That is, K is a "tuple identifier"
- No proper subset of K satisfies the above condition
- That is, K is minimal
- Example: Student (SID, name, age, GPA)
- SID is a key of Student
- \{SID, name $\}$ is not a key (not minimal)

More examples of keys

- Enroll (SID, CID)
- \{SID, CID $\}$
- Address (street_address, city, state, zip)
- \{street_address, city, state\}
- \{street_address, zip\}

Usage of keys

- More constraints on data, fewer mistakes
- Look up a row by its key value
- Many selection conditions are "key = value"
- "Pointers"
- Example: Enroll (SID, CID)
- SID is a key of Student
- CID is a key of Course
- Enroll "links" a Student row with a Course row
- Many join conditions are "key = key value stored in another table"

Functional dependencies

- A functional dependency (FD) has the form $X \rightarrow Y$, where X and Y are sets of attributes in a relation R
- $X \rightarrow Y$ means that whenever two tuple in R agree on all the attributes of X, they must also agree on all attributes of Y

FD examples

Address (street_address, city, state, zip)

- street_address, city, state \rightarrow zip
- zip \rightarrow city, state
- zip, state $\rightarrow z i p$?
- Trivial: LHS \supseteq RHS
- zip \rightarrow state, zip?
- Non-trivial, but not completely: LHS \cap RHS $\neq \varnothing$
$>$ Completely non-trivial FD: LHS \cap RHS $=\varnothing$

Reasoning with FDs

Given a relation R and set of FDs F

- Does another FD follow from F ?
- Are some of the FDs in \mathbf{F} redundant (because they follow from the others)?
- Is K a key of R ?
- What are all the keys of R ?

Keys redefined using FDs

A set of attributes K is a key for a relation R if

- $K \rightarrow$ all (other) attributes of R
- That is, K is a "super key"
- No proper subset of K satisfies the above condition
- That is, K is minimal

Attribute closure

- Given R, a set of FDs \mathbf{F} that holds in R, and a set of attributes Z in R : The closure of Z with respect to \mathbf{F} (denoted Z^{+}) is the set of all attributes functionally determined by Z
- Algorithm for computing the closure
- Start with Z
- If $X \rightarrow Y$ is in \mathbf{F} and X is already in the closure, then also add Y to the closure
- Repeat until you can't add anything more

A more complex example

StudentGrade (SID, name, email, CID, grade)

- SID \rightarrow name, email
- email \rightarrow SID
- SID, CID \rightarrow grade
- Not a good design, and we will see why later

Using attribute closure

Given a relation R and set of FDs \mathbf{F}

- Does another FD $X \rightarrow Y$ follow from \mathbf{F} ?
- Compute X^{+}with respect to \mathbf{F}
- If $Y \subseteq X^{+}$, then $X \rightarrow Y$ follow from \mathbf{F}
- Is K a key of R ?
- Computer K^{+}with respect to \mathbf{F}
- If K^{+}contains all the attributes of R, K is a super key
- Still need to verify that K is minimal (how?)

Using rules of FDs

Given a relation R and set of FDs \mathbf{F}

- Does another FD $X \rightarrow Y$ follow from \mathbf{F} ?
- Use the rules to come up with a proof
- Example: CID, email \rightarrow grade?
email \rightarrow SID (given in F)
CID, email \rightarrow CID, SID (augmentation)
SID, CID \rightarrow grade (given in F)
CID, email \rightarrow grade (transitivity)

Example of computing closure

- \{ CID, email $\}^{+}=$?
- email \rightarrow SID
- Add SID; closure is now \{ CID, email, SID \}
- SID \rightarrow name, email
- Add name and email; closure is now \{ CID, email, SID, name, email \}
- SID, CID \rightarrow grade
- Add grade; closure is now all the attributes in StudentGrade

Rules of FDs

- Armstrong's axioms
- Reflexivity: If $Y \subseteq X$, then $X \rightarrow Y$
- Augmentation: If $X \rightarrow Y$, then $X Z \rightarrow Y Z$ for any Z
- Transitivity: If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$
- Rules derived from axioms
- Splitting: If $X \rightarrow Y Z$, then $X \rightarrow Y$ and $X \rightarrow Z$
- Combining: If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow Y Z$

Problems with redundancy

StudentGrade (SID, name, email, CID, grade) SID \rightarrow name, email

SID	name	email	CID	grade
142	Bart	bart@fox.com	CPS 216	B-
142	Bart	bart@fox.com	CPS 214	B
123	Milhouse	milhouse@fox.com	CPS 216	B+
857	Lisa	lisa@fox.com	CPS 216	A+
857	Lisa	lisa@fox.com	CPS 130	A_{+}
456	Ralph	ralph@fox.com	CPS 214	C
\ldots	\ldots	\ldots	\ldots	\ldots

- Wastes space
- Potential inconsistencies (update anomaly)

Decomposition

- Eliminates redundancy
- To get back to the original relation: $\bowtie \triangleleft$
- Fine: join returns the original relation
- Unnecessary: now SID is stored twice!

Lossless join decomposition

- Suppose that R is decomposed into S and T
$\operatorname{attrs}(R)=\operatorname{attrs}(S) \cup \operatorname{attrs}(T)$
$S=\pi_{\operatorname{attrs}(S)}(R)$
$T=\pi_{\operatorname{attrs}(T)}(R)$
- It is a lossless join decomposition if, given constraints such as FDs, we can guarantee
$R=S \triangleright \triangleleft T$

Bad decomposition

- Association between CID and grade is lost
- Join returns more rows than the original relation

Loss? But I got more rows!

- "Loss" refers not to the loss of tuples, but to the loss of information
- Or, the ability to distinguish different original

Questions about decomposition

- When to decompose
- How to come up with a correct decomposition

BCNF decomposition algorithm

- Find a BNCF violation
- That is, a non-trivial FD $X \rightarrow Y$ in R where X is not a super key of R
- Decompose R into R_{1} and R_{2}, where
- R_{1} has attributes $X \cup Y$
- R_{2} has attributes $X \cup Z(Z$ contains all attributes of R that are in neither X nor Y)
- Repeat until all relations are in BNCF

An answer: BCNF

- A relation R is in Boyce-Codd Normal Form if
- For every non-trivial FD $X \rightarrow Y$ in R, X is a super key
- That is, all FDs follow from "key \rightarrow other attributes"
- When to decompose
- As long as some relation is not in BCNF
- How to come up with a correct decomposition
- Always decompose on a BCNF violation
- Then it's a lossless join decomposition!

BCNF decomposition example

StudentGrade (SID, name, email, CID, grade)

Why is BCNF decomposition lossless

- Given non-trivial $X \rightarrow Y$ in R where X is not a super key of R, need to prove:
- Anything we project always comes back in the join:

$$
\begin{aligned}
& R \subseteq \pi_{X Y}(R) \bowtie \triangleleft \pi_{X Z}(R) \\
& \quad \cdot \text { Sure; and it doesn't depend on the FD }
\end{aligned}
$$

- Anything that comes back in the join must be in the original relation:

$$
R \supseteq \pi_{X Y}(R) \bowtie \triangleleft \pi_{X Z}(R)
$$

Yet another example

- Address (street_address, city, state, zip)
- street_address, city, state \rightarrow zip
- zip \rightarrow city, state
- Keys
- \{street_address, city, state $\}$
- \{street_address, zip $\}$
- BCNF?
- Violation: zip \rightarrow city, state

To decompose, or not to decompose

Address ${ }_{1}$ (zip, city, state)
Address ${ }_{2}$ (street_address, zip)

- FDs in Address ${ }_{1}$
- zip \rightarrow city, state
- FDs in Address $_{2}$
- None!
- Hey, where is street_address, city, state $\rightarrow z i p$?
- Cannot check it without joining Address ${ }_{1}$ and Address 2 back together

"Elegant" solution

- Define the problem away!
- R is in Third Normal Form (3NF) if for every non-trivial FD $X \rightarrow A$, either
$-X$ is super key of R, or
$-A$ is a member of at least one key of R
- So Address is already in 3NF
- Tradeoff:
- Can check all FDs in the decomposed relations
- Might have some redundancy due to FDs

What's next

- Another kind of dependency and normal form
- A comprehensive design example
- SQL basics

Recap

- Identifying tuples: keys
- Generalizing the key concept: FDs
- Non-key FDs: redundancy
- Avoiding redundancy: BCNF decomposition
- Preserving FDs: 3NF

