Relational Database Design

CPS 216
Advanced Database Systems

$\mathrm{BNCF}=$ no redundancy?

- Student (SID, CID, club)
- Suppose your classes have nothing to do with the clubs you join
- FDs?
- None
- BNCF?
- Yes
- Redundancies?
- Tons!

Relational design: a review

- Identifying tuples: keys
- Generalizing the key concept: FDs
- Non-key FDs: redundancy
- Avoiding redundancy: BCNF decomposition
- Preserving FDs: 3NF

Multi-valued dependencies

- A multi-valued dependency (MVD) has the form $X \rightarrow \rightarrow Y$, where X and Y are sets of attributes in a relation R
- $X \rightarrow \rightarrow Y$ means that whenever two tuples in R agree on all the attributes of X, then we can swap their Y components and get two new tuples that are also in R

MVD examples

Student (SID, CID, club)

- SID \rightarrow CID
- SID $\rightarrow \rightarrow$ club
- Intuition: given SID, CID and club are "independent"
- SID, CID $\rightarrow \rightarrow$ club
- Trivial: LHS \cup RHS $=$ all attributes of R
- SID, CID \rightarrow SID
- Trivial: LHS \supseteq RHS

Complete MVD + FD rules

- FD reflexivity, augmentation, and transitivity
- MVD complementation: If $X \rightarrow \rightarrow Y$, then $X \rightarrow \rightarrow \operatorname{attrs}(R)-X-Y \quad$ Try proving
- MVD augmentation: dependencies If $X \rightarrow \rightarrow Y$ and $V \subseteq W$, then $X W \rightarrow \rightarrow Y V$ with these!?
- MVD transitivity:

If $X \rightarrow \rightarrow Y$ and $Y \rightarrow \rightarrow Z$, then $X \rightarrow \rightarrow Z-Y$

- Replication (FD is MVD):

If $X \rightarrow Y$, then $X \rightarrow \rightarrow Y$

- Coalescence:

If $X \rightarrow \rightarrow Y$ and $Z \subseteq Y$ and there is some W disjoint from Y such that $W \rightarrow Z$, then $X \rightarrow Z$

An elegant solution: chase

- Given a set of FDs and MVDs D, does another dependency d (FD or MVD) follow from D ?
- Procedure
- Start with the hypotheses of d, and treat them as
"seed" tuples in a relation
- Apply the given dependencies in D repeatedly
- If we apply an FD, we infer equality of two symbols
- If we apply an MVD, we infer more tuples
- If we infer the conclusion of d, we have a proof
- Otherwise, if nothing more can be inferred, we have a counterexample

Another proof by chase

- In $R(A, B, C, D)$, does $A \rightarrow B$ and $B \rightarrow C$ imply $A \rightarrow C$?

$A \rightarrow B$
$\mathrm{b} 1=\mathrm{b} 2$
$B \rightarrow C$
$\mathrm{c} 1=\mathrm{c} 2$
In general, both new tuples and new equalities may be generated

Proof by chase

- In $R(A, B, C, D)$, does $A \rightarrow \rightarrow B$ and $B \rightarrow C$ imply $A \rightarrow C$?

8

Counterexample by chase

- In $R(A, B, C, D)$, does $A \rightarrow \rightarrow B C$ and $C D \rightarrow B$ imply $A \rightarrow B$?

4NF

- A relation R is in Fourth Normal Form (4NF) if
- For every non-trivial MVD $X \rightarrow Y$ in R, X is a super key
- That is, all FDs and MVDs follow from "key \rightarrow other attributes"
- 4NF is stronger than BCNF
- Because every FD is also an MVD

4NF decomposition algorithm

- Find a 4NF violation
- A non-trivial MVD $X \rightarrow \rightarrow Y$ in R where X is not a super key
- Decompose R into R_{1} and R_{2}, where
- R_{1} has attributes $X \cup Y$
- R_{2} has attributes $X \cup Z(Z$ contains attributes not in X or $Y)$
- Repeat until all relations are in 4 NF
- Almost identical to BCNF decomposition algorithm
- Any decomposition on a 4NF violation is lossless

Recap

- Another source of redundancy: MVDs
- Reasoning about FDs and MVDs: chase
- Avoiding redundancy due to MVDs: 4NF

A complete design example

- Information about parts and assemblies for a manufacturing company; e.g.:
- A bicycle consists of one frame and two wheels; the cost of assembly is \$30
- A frame is just a basic part
- A wheel consists of one tire, one rim, and 48 spokes; the cost of assembly is $\$ 40$
- Everything has a part ID and a name

Entities and relationships

- Entities
- Parts (with ID and name)
- Assemblies (with ID, name, and cost)
- Relationships
- An assembly as a whole is a part (with an assembly cost)
- An assembly consists of some number of one or more subparts

Identify constraints

- ID is a key for parts and assemblies
- An assembly has one or more subparts
- A part can serve as a subpart for zero or more assemblies

Apply relational design theory

- Part (ID, name)
- ID is a key
- Assembly (ID, cost)
- ID is a key
- ComposedOf (assemblyID, partID, number)
- \{assemblyID, partID\} is a key
- 3NF? BCNF? 4NF?
- Yes, yes, yes

Good design principles

- Avoid redundancy
- Avoid decomposing too much
- KISS
- Focus on the task and avoid over-design

Populate schema with data

Part	
$I D$	name
1	bicycle
2	frame
3	wheel
4	tire
5	rim
6	spoke
\ldots	\ldots

ComposedOf

assemblylD	partlD	number
1	2	1
1	3	2
3	4	1
3	5	1
3	6	48
\ldots	\ldots	\ldots

