Relational Database Design

CPS 216
Advanced Database Systems

Relational design: a review

Identifying tuples: keys

Generalizing the key concept: FDs

Non-key FDs: redundancy

Avoiding redundancy: BCNF decomposition
Preserving FDs: 3NF

BNCF = no redundancy?

« Student (SID, CID, club)

— Suppose your classes have nothing to do with the
clubs you join

— FDs?
* None SID] _CID club
142 | CPS 216 | ballet
- BNCF? 142 | CPS 216 | sumo
e Yes 142 | CPS 214 | ballet
R 142 | CPS 214 | sumo
— Redundancies? 123 | CPS 216 | chess
« Tons! 123 | CPS 216 golf

Multi-valued dependencies

A multi-valued dependency (MVD) has the form
X - - Y, where X and Y are sets of attributes in a
relation R

X = - Y means that whenever two tuples in R
agree on all the attributes of X, then we can swap
their Y components and get two new tuples that
arealsoin R

b2 o1 Must be in R as well
4

Do o o |2 X
o
N
o
N

MVD examples

Student (SID, CID, club)
« SID - - CID
* SID - - club
— Intuition: given SID, CID and club are “independent”
» SID, CID - - club
— Trivial: LHS O RHS = all attributes of R
« SID, CID - - SID
— Trivial: LHS O RHS

Complete MVD + FD rules

FD reflexivity, augmentation, and transitivity

MVD complementation:

IfX - - Y,then X - - attrs(R)—= X-Y Try proving
MVD augmentation: dependencies
IfX - - Yand VOW, then XW — - YV with these!?
MVD transitivity:

IfX > YandY - - Z, thenX - - Z-Y
Replication (FD is MVD):

IfX - Y, thenX - - Y

Coalescence:

If X - - Yand Z OY and there is some W disjoint from
Ysuchthat W — Z, thenX - Z 6

An elegant solution: chase

» Given a set of FDs and MVDs D, does another
dependency d (FD or MVD) follow from D?

 Procedure
— Start with the hypotheses of d, and treat them as
“seed” tuples in a relation
— Apply the given dependencies in D repeatedly
« If we apply an FD, we infer equality of two symbols
« If we apply an MVD, we infer more tuples
— If we infer the conclusion of d, we have a proof
— Otherwise, if nothing more can be inferred, we have a

counterexample ,

Proof by chase

*InR(AB,C,D),doesA - - BandB - - C

imply A - - C?
Have Need
AlBJ]c]D AlBJc[D].
a | bl |ect[adl a | bl[c2|dlld
a | b2 | c2 | d a [b2 | c1|dl|¥
A B n-bz -cl -dl
77 P [a b [e2 [d]
BL._.Clelmlalwe]
[alb2]cola
B._Clalole al
[a [b1 c[a]

Another proof by chase

*InR(A B, C,D),doesA - Band B - C imply
A C?

Have Need

B | C]|D cl=c2y

a bl cl di
a b2 c2 d2

A - B bl=b2

B L. C c1=c2

In general, both new tuples and new equalities
may be generated

Counterexample by chase

*InR(AB,C,D),doesA - -~ BCandCD - B
imply A - B?

Have Need
A[BJ]C]D b1=b2
a bl cl d1
a b2 c2 d2
A BC a2l caldl]
B [alb1]ec[do]

ANF

 Arelation R is in Fourth Normal Form (4NF) if

— For every non-trivial MVD X — - YinR, Xisa
super key

— That is, all FDs and MVDs follow from “key — other
attributes”

* 4NF is stronger than BCNF
— Because every FD is also an MVD

ANF decomposition algorithm

 Find a 4NF violation

— Anon-trivial MVD X - - Y in R where X is not a super key
» Decompose R into R, and R,, where

- Ry has attributes X O Y

- R, has attributes X [J Z (Z contains attributes not in X or Y)
* Repeat until all relations are in 4NF

» Almost identical to BCNF decomposition algorithm
» Any decomposition on a 4NF violation is lossless

4ANF decomposition example

SID CID club

142 | CPS 216 | ballet
142 | CPS 216 | sumo

142 | CPS 214 | ballet

Student (SID, CID, club) 242 CPS214 | sumo

123 | CPS 216 | chess

4NF violation: SID — — CID [123] cPs216 [goff

Enroll (SID, CID) Join (SID, club)

3NF, BCNF, and 4NF

3NF BCNF 4NF
Preserves FDs? Yes No No
Redudancy due to FDs? Possible No No
Redundancy due to MVDs? | Possible | Possible No

4NF 4NF
SID CID SID | club
142 | CPS 216 142 | ballet
142 | CPS 214 142 | sumo
123 | CPS 216 123 | chess
123 | golf
13
Recap

« Another source of redundancy: MVDs
» Reasoning about FDs and MVDs: chase
* Avoiding redundancy due to MVDs: 4NF

A complete design example

« Information about parts and assemblies for a
manufacturing company; e.g.:

— A bicycle consists of one frame and two wheels; the
cost of assembly is $30

— A frame is just a basic part

— A wheel consists of one tire, one rim, and 48 spokes;
the cost of assembly is $40

— Everything has a part ID and a name

Entities and relationships

 Entities
— Parts (with ID and name)
— Assemblies (with ID, name, and cost)
 Relationships
— An assembly as a whole is a part (with an assembly cost)
— An assembly consists of some number of one or more subparts

Identify constraints

* ID is a key for parts and assemblies

 An assembly has one or more subparts

* A part can serve as a subpart for zero or more
assemblies

Design relational schema

<a
0..n
d.

omposedOf

« Entities to relations @

— Part (ID, name)
— Assembly (1D, cost)
« ID is inherited from Part; name is not repeated
* Relationships to relations

— ComposedOf (assemblyID, partID, number)
 Use keys as “links” 19

Encode constraints

Part (ID, name)
- ID isa key
» Assembly (1D, cost)
- ID isa key
» ComposedOf (assemblyID, partID, number)
— {assemblyID, partID} is a key
* Any missing constraints?

Apply relational design theory

* Part (ID, name)
—ID is a key

» Assembly (ID, cost)
—ID is a key

» ComposedOf (assemblylD, partID, number)
— {assemblyID, partID} is a key

* 3NF? BCNF? 4NF?

- Yes, yes, yes
21

Populate schema with data

Part
ID name
1 bicycle Assembly
2 frame D cost
3 wheel 1 30
4 tire 3 40
5 rim
6 spoke
ComposedOf
lassemblyID| partiD | number

1 2 1

1 3 2

3 4 1

3 5 1

3 6 48

Good design principles

 Avoid redundancy
 Avoid decomposing too much
» KISS

— Focus on the task and avoid over-design

23

