SQL

CPS 216
Advanced Database Systems

SQL

» SQL: Structured Query Language

— Pronounced “S-Q-L” or “sequel”

— The query language of every commercial DBMS
« A brief history

— System R

- SQL89

- SQL92 (SQL2)

— SQL3 (still under construction)

Table creation

» CREATE TABLE table_name

(..., column_name; column_type;, ...);
» Example

— create table Student (SID integer,

name varchar(30), email varchar(30),
age integer, GPA float);

— create table Course (CID char(10),
title varchar(100));
— create table Enroll
(SID integer, CID char(10));

SQL is case insensitive

SFW queries

* SELECTA, A, ..., A
FROMR, R,, ...,R
WHERE condition;

« Also called an SPJ (select-project-join) query
 Equivalent (more or less) to relational algebra query

n

m

nAl, Ags oo Ay (O ongition (Ry X Ry % ... X R))

Example: reading a table

e SELECT * FROM Student;
— Single-table query; no cross product
— WHERE clause is optional

— “*" is a shorthand for “all columns”

Example: selection and projection

» Names of students under 18
— SELECT name FROM Student WHERE age < 18;
* When was Lisa born?

— SELECT 2001 - age
FROM Student
WHERE name = "Lisa’;
»SELECT list can contain calculations

»String literals are enclosed in single quotes (case
sensitive)

Example: join

« SIDs and names of students taking courses with
the word “Database” in their titles
— SELECT Student.SID, Student.name
FROM Student, Enroll, Course
WHERE Student.SID = Enroll.SID
AND Enroll.CID = Course.CID
AND title LIKE *%Database%’;
»Many, many more built-in predicates such as LIKE
»Okay to omit the table_name in
table_name.column_name if column_name is unique

7

Example: rename

* SIDs of all pairs of classmates

— SELECT el1.SID AS SID1, e2.SID AS SID2
FROM Enroll AS €1, Enroll AS e2
WHERE €1.CID = e2.CID
AND €el1.SID > e2.SID;

— “AS” is optional; in fact Oracle doesn’t like it in the
FROM clause

Set versus bag semantics

o Set
— No duplicates
— Relational model uses set semantics
* Bag
— Duplicates allowed
— Number of duplicates is significant
— SQL uses bag semantics by default

Set versus bag example

SID CID

142 CPS 216
142 CPS 214
123 [CPS 216
857 CPS 216
857 CPS 130
456 | CPS 214

TT,, (Enroll) SELECT SID FROM Enroll;

SID
142
142
123
857
857
456

SID
142
123
857
456

A case for bag semantics

* Efficiency
— Saves time of eliminating duplicates
» Which one is more useful?
TT5p, (Student)
Just returns all possible GPAs
SELECT GPA FROM Student;
Returns the real GPA distribution

* Besides, SQL provides the option of set
semantics with DISTINCT

Example: forcing set semantics

* SIDs of all pairs of classmates

— SELECT el1.SID as SID1, €2.SID as SID2
FROM Enroll as e1, Enroll as e2
WHERE €e1.CID = ¢e2.CID
AND el1.SID > e2.SID;

« Duplicates: Suppose Bart and Lisa take CPS 216 and 214

— SELECT DISTINCT el.SID as SID1, e2.SID as SID2
FROM Enroll as €1, Enroll as e2
WHERE €1.CID = ¢e2.CID
AND €1.SID > e2.SID;

* No duplicates

Operational semantics of SFW

* SELECT [DISTINCT] E,, E,, ..., E,
FROMR, R,, ...,R
WHERE condition;

» Foreacht, inR;:

Foreacht,inR,:
Foreacht inR,;:
If condition is true over t;, t,, ..., t,:
Compute and output E;, E,, ..., E,
If DISTINCT is present
Eliminate duplicates in output

m

Set and bag operations

¢ UNION, EXCEPT, INTERSECT
— Set semantics
— Exactly like set [0, —, n in relational algebra

¢ UNION ALL, EXCEPT ALL, INTERSECT ALL
— Bag semantics

— Bag union: sum the two counts (the times an element
appears in the two bags)

— Bag difference: proper-subtract the two counts
— Bag intersection: take the minimum of the two counts

14

Examples of bag operations

R S
A A
apple apple
apple orange
orange orange
R UNION ALL S
2 R EXCEPT ALL S
apple
I _A
appie | [ape | RINTERSECT ALLS
orange A
orange
orange | apple |
orange

Example of set versus bag operations

Enroll(SID, CID), ClubMember(club, SID)
— (SELECT SID FROM ClubMember)
EXCEPT
(SELECT SID FROM Enroll)

SIDs of students who are in clubs but not taking any classes

— (SELECT SID FROM ClubMember)
EXCEPT ALL
(SELECT SID FROM Enroll)

SIDs of students who are in more clubs than classes

Table expressions

 Use query result as a table
— In set and bag operations, FROM clauses, etc.
— A way to “nest” queries

» Example: names of students who are in more
clubs than class

SELECT DISTINCT name
FROM Student,
((SELECT SID FROM ClubMember)
EXCEPT ALL
(SELECT SID FROM Enroll)) AS S
WHERE Student.SID = S.SID;

Scalar subqueries

A query that returns a single row can be used as a
value in WHERE, SELECT, etc.

» Example: students at the same age as Bart
SELECT *
FROM Student What’s Bart’s age?
WHERE age = (SELECT age
FROM Student
WHERE name = Bart’);

 Runtime error if subquery returns more than one
row

18

IN subqueries

» “IN” checks if something is in the result of the
subquery

» Example: students at the same age as (any) Bart
SELECT *
FROM Student What’s Bart’s age?
WHERE age IN (SELECT age
FROM Student
WHERE name = ’Bart’);

EXISTS subqueries

» “EXISTS” checks if the result of a subquery is
empty
» Example: students at the same age as (any) Bart
— SELECT *
FROM Student AS S
WHERE EXISTS (SELECT * FROM Student
WHERE name = ’Bart’
AND age = S.age);
— It’s a correlated subquery — a subquery that refers to

values in a surrounding query
20

Operational semantics of subqueries

SELECT * FROM Student AS S
WHERE EXISTS
(SELECT * FROM Student
WHERE name = "Bart’ AND age = S.age);
* For each row S in Student
— Evaluate the subquery with the appropriate value of
S.age
— If the result of the subquery is not empty, output S.*

» The query optimizer reserves the right to process
the query in any other equivalent way

21

Scoping rule of subqueries

SELECT * FROM Student AS S
WHERE EXISTS
(SELECT * FROM Student
WHERE name = "Bart’ AND age = S.age);
* To find out which table a column belongs to
— Start with the immediately surrounding query
— If not found, look in the one surrounding that, and
repeat if necessary

 Use renaming to avoid confusion

Quantified subqueries

A quantified subquery can be used as a value in a
comparison predicate

... WHERE something > ANY | ALL (subquery)...
» ANY: existential quantifier (exists)
o ALL: universal quantifier (for all)
* Beware
— In common parlance, “any” and “all” seem to be
synonyms
- In SQL, ANY really means SOME

23

Examples of quantified subqueries

» Which students have the highest GPA?

- SELECT *
FROM Students
WHERE GPA >= ALL
(SELECT GPA FROM Student);

- SELECT *
FROM Student
WHERE NOT
(GPA < ANY
(SELECT GPA FROM Student));

Summary

» Bag semantics
— Richer semantics, greater efficiency, but just not “relational”

¢ SELECT-FROM-WHERE
— A canonical form for queries with any nesting of selection,
projection, and join
— Most queries are in this form
 Subqueries
— More declarative (recall the highest GPA query)

— But no more expressive
« Try translating other forms of subqueries into (NOT) EXISTS, which in
turn can be translated into join (and difference)
25

Aggregates

* COUNT, SUM, AVG, MIN, MAX
» Example: number of students under 18, and their
average GPA

— SELECT COUNT(*), AVG(GPA)
FROM Student
WHERE age < 18;

— COUNT(*) counts the number of rows

Aggregates with DISTINCT

» Example: How many students are taking classes?

— SELECT COUNT(DISTINCT SID)
FROM Enroll;

— SELECT COUNT(*)
FROM (SELECT DISTINCT SID,
FROM Enroll);

27

GROUP BY

e SELECT ... FROM ... WHERE ...
GROUP BY list_of_columns;
 Operational semantics
— Compute FROM (%)
— Compute WHERE ()
— Compute GROUP BY: group results according to the
values of GROUP BY columns
— Compute SELECT for each group (77)

»Number of groups = number of rows in the output
28

GROUP BY example

* Find the average GPA for each age group

— SELECT age, AVG(GPA)
FROM Student
GROUP BY age;

29

GROUP BY example with data

SELECT age, AVG(GPA) FROM Student GROUP BY age;

SID | name | age | GPA

142 | Bart 10 [23 -
=T = 5o Compute GROUP BY: group

123 | Milhouse | 10 | 3.1 results according to the values of
456 | Ralph 8 | 23 GROUP BY columns
Sb | name | age [GPA
142 | Bart 10 | 23
123 [Milhouse 10 3.1
Compute SELECT BT N o S O
456 | Raph | 8 [23
for each group
age [AVG(GPA)
10 2.7
8 3.3

Restriction on SELECT

« If any aggregate is used, then every column
referenced in SELECT must be either
— Aggregated, or
— A GROUP BY column

» Example: Which students have the highest GPA?

- SEL udent;
SID [name [age [GPA [sID [MAX(GPA)]
142 | Bart 10 | 23 L2 a3 1]
857 | Lisa 8 | 43

123 | Milhouse 10 3.1 s
456 | Ralph s | 23 | GROUP BY list is empty;
all rows are in one group 3

HAVING

* SELECT... FROM... WHERE... GROUP BY. ...
HAVING condition;

 Operational semantics
— Compute FROM (%)
— Compute WHERE ()

— Compute GROUP BY: group results according to the
values of GROUP BY columns

— Compute HAVING (another O over the groups)
— Compute SELECT for each group (77)

HAVING examples

* Find the average GPA for each age group over 10
— SELECT age, AVG(GPA)
FROM Student
GROUP BY age
HAVING age > 10;
— Can be written using WHERE

« List the average GPA for each age group with more than
a hundred students

— SELECT age, AVG(GPA)
FROM Student
GROUP BY age
HAVING COUNT(*) > 100;

33

Next time

* NULLs

* Outerjoins

Updates

Constraints

Triggers

