
1

SQL

CPS 216
Advanced Database Systems

2

SQL
• SQL: Structured Query Language

– Pronounced “S-Q-L” or “sequel”
– The query language of every commercial DBMS

• A brief history
– System R
– SQL89
– SQL92 (SQL2)
– SQL3 (still under construction)

3

Table creation
• CREATE TABLE table_name

(…, column_namei column_typei, …);
• Example

– create table Student (SID integer,
name varchar(30), email varchar(30),
age integer, GPA float);

– create table Course (CID char(10),
title varchar(100));

– create table Enroll
(SID integer, CID char(10));

SQL is case insensitive

4

SFW queries
• SELECT A1, A2, …, An

FROM R1, R2, …, Rm
WHERE condition;

• Also called an SPJ (select-project-join) query
• Equivalent (more or less) to relational algebra query

πA1, A2, …, An
(σcondition (R1 × R2 × … × Rm))

5

Example: reading a table

• SELECT * FROM Student;
– Single-table query; no cross product

– WHERE clause is optional

– “*” is a shorthand for “all columns”

6

Example: selection and projection
• Names of students under 18

– SELECT name FROM Student WHERE age < 18;
• When was Lisa born?

– SELECT 2001 – age
FROM Student
WHERE name = ’Lisa’;

�SELECT list can contain calculations
�String literals are enclosed in single quotes (case 

sensitive)



2

7

Example: join
• SIDs and names of students taking courses with 

the word “Database” in their titles
– SELECT Student.SID, Student.name

FROM Student, Enroll, Course
WHERE Student.SID = Enroll.SID
AND Enroll.CID = Course.CID
AND title LIKE ’%Database%’;

�Many, many more built-in predicates such as LIKE
�Okay to omit the table_name in 

table_name.column_name if column_name is unique
8

Example: rename
• SIDs of all pairs of classmates

– SELECT e1.SID AS SID1, e2.SID AS SID2
FROM Enroll AS e1, Enroll AS e2
WHERE e1.CID = e2.CID
AND e1.SID > e2.SID;

– “AS” is optional; in fact Oracle doesn’t like it in the 
FROM clause

9

Set versus bag semantics
• Set

– No duplicates
– Relational model uses set semantics

• Bag
– Duplicates allowed
– Number of duplicates is significant
– SQL uses bag semantics by default

10

Set versus bag example
SID CID
142 CPS 216
142 CPS 214
123 CPS 216
857 CPS 216
857 CPS 130
456 CPS 214
... ...

πSID (Enroll)
SID
142
123
857
456
...

SELECT SID FROM Enroll;
SID
142
142
123
857
857
456
...

11

A case for bag semantics
• Efficiency

– Saves time of eliminating duplicates
• Which one is more useful?

πGPA (Student)

SELECT GPA FROM Student;
Just returns all possible GPAs

Returns the real GPA distribution

• Besides, SQL provides the option of set
semantics with DISTINCT

12

Example: forcing set semantics
• SIDs of all pairs of classmates

– SELECT e1.SID as SID1, e2.SID as SID2
FROM Enroll as e1, Enroll as e2
WHERE e1.CID = e2.CID
AND e1.SID > e2.SID;

• Duplicates: Suppose Bart and Lisa take CPS 216 and 214
– SELECT DISTINCT e1.SID as SID1, e2.SID as SID2

FROM Enroll as e1, Enroll as e2
WHERE e1.CID = e2.CID
AND e1.SID > e2.SID;

• No duplicates



3

13

Operational semantics of SFW
• SELECT [DISTINCT] E1, E2, …, En

FROM R1, R2, …, Rm
WHERE condition;

• For each t1 in R1:
For each t2 in R2: … …

For each tm in Rm:
If condition is true over t1, t2, …, tm:

Compute and output E1, E2, …, En
If DISTINCT is present

Eliminate duplicates in output 14

Set and bag operations
• UNION, EXCEPT, INTERSECT

– Set semantics
– Exactly like set ∪ , −, ∩ in relational algebra

• UNION ALL, EXCEPT ALL, INTERSECT ALL
– Bag semantics
– Bag union: sum the two counts (the times an element 

appears in the two bags)
– Bag difference: proper-subtract the two counts
– Bag intersection: take the minimum of the two counts

15

Examples of bag operations

A
apple
apple

orange

A
apple

orange
orange

R S

R UNION ALL S
A

apple
apple
apple

orange
orange
orange

R EXCEPT ALL S
A

apple R INTERSECT ALL S
A

apple
orange

16

Example of set versus bag operations
Enroll(SID, CID), ClubMember(club, SID)

– (SELECT SID FROM ClubMember)
EXCEPT
(SELECT SID FROM Enroll)

– (SELECT SID FROM ClubMember)
EXCEPT ALL
(SELECT SID FROM Enroll)

SIDs of students who are in clubs but not taking any classes

SIDs of students who are in more clubs than classes

17

Table expressions
• Use query result as a table

– In set and bag operations, FROM clauses, etc.
– A way to “nest” queries

• Example: names of students who are in more 
clubs than class

SELECT DISTINCT name
FROM Student,

(

) AS S
WHERE Student.SID = S.SID;

(SELECT SID FROM ClubMember)
EXCEPT ALL
(SELECT SID FROM Enroll)

18

Scalar subqueries
• A query that returns a single row can be used as a 

value in WHERE, SELECT, etc.
• Example: students at the same age as Bart

SELECT *
FROM Student
WHERE age = (

);

SELECT age
FROM Student
WHERE name = ’Bart’

What’s Bart’s age?

• Runtime error if subquery returns more than one
row



4

19

IN subqueries
• “IN” checks if something is in the result of the 

subquery
• Example: students at the same age as (any) Bart

SELECT *
FROM Student
WHERE age IN (

);

SELECT age
FROM Student
WHERE name = ’Bart’

What’s Bart’s age?

20

EXISTS subqueries
• “EXISTS” checks if the result of a subquery is 

empty
• Example: students at the same age as (any) Bart

– SELECT *
FROM Student AS S
WHERE EXISTS (SELECT * FROM Student

WHERE name = ’Bart’
AND age = S.age);

– It’s a correlated subquery — a subquery that refers to 
values in a surrounding query

21

Operational semantics of subqueries
SELECT * FROM Student AS S

WHERE EXISTS
(SELECT * FROM Student
WHERE name = ’Bart’ AND age = S.age);

• For each row S in Student
– Evaluate the subquery with the appropriate value of 

S.age
– If the result of the subquery is not empty, output S.*

• The query optimizer reserves the right to process 
the query in any other equivalent way

22

Scoping rule of subqueries
SELECT * FROM Student AS S

WHERE EXISTS
(SELECT * FROM Student

WHERE name = ’Bart’ AND age = S.age);
• To find out which table a column belongs to

– Start with the immediately surrounding query
– If not found, look in the one surrounding that, and 

repeat if necessary
• Use renaming to avoid confusion

23

Quantified subqueries
• A quantified subquery can be used as a value in a 

comparison predicate
… WHERE something > ANY | ALL (subquery)…

• ANY: existential quantifier (exists)
• ALL: universal quantifier (for all)
• Beware

– In common parlance, “any” and “all” seem to be 
synonyms

– In SQL, ANY really means SOME
24

Examples of quantified subqueries
• Which students have the highest GPA?

– SELECT *
FROM Students
WHERE GPA >= ALL

(SELECT GPA FROM Student);
– SELECT *

FROM Student
WHERE NOT

(GPA < ANY
(SELECT GPA FROM Student));



5

25

Summary
• Bag semantics

– Richer semantics, greater efficiency, but just not “relational”
• SELECT-FROM-WHERE

– A canonical form for queries with any nesting of selection, 
projection, and join

– Most queries are in this form
• Subqueries

– More declarative (recall the highest GPA query)
– But no more expressive

• Try translating other forms of subqueries into (NOT) EXISTS, which in 
turn can be translated into join (and difference)

26

Aggregates
• COUNT, SUM, AVG, MIN, MAX
• Example: number of students under 18, and their 

average GPA
– SELECT COUNT(*), AVG(GPA)

FROM Student
WHERE age < 18;

– COUNT(*) counts the number of rows

27

Aggregates with DISTINCT
• Example: How many students are taking classes?

– SELECT COUNT(DISTINCT SID)
FROM Enroll;

– SELECT COUNT(*)
FROM (SELECT DISTINCT SID,

FROM Enroll);

28

GROUP BY
• SELECT … FROM … WHERE …

GROUP BY list_of_columns;
• Operational semantics

– Compute FROM (××××)
– Compute WHERE (σ)
– Compute GROUP BY: group results according to the 

values of GROUP BY columns
– Compute SELECT for each group (π)
�Number of groups = number of rows in the output

29

GROUP BY example

• Find the average GPA for each age group

– SELECT age, AVG(GPA)
FROM Student
GROUP BY age;

30

GROUP BY example with data
SELECT age, AVG(GPA) FROM Student GROUP BY age;

SID name age GPA
142 Bart 10 2.3
857 Lisa 8 4.3
123 Milhouse 10 3.1
456 Ralph 8 2.3
... ... ... ...

Compute GROUP BY: group 
results according to the values of 
GROUP BY columns

Compute SELECT
for each group

SID name age GPA
142 Bart 10 2.3
123 Milhouse 10 3.1
857 Lisa 8 4.3
456 Ralph 8 2.3
... ... ... ...

age AVG(GPA)
10 2.7
8 3.3
... ...



6

31

Restriction on SELECT
• If any aggregate is used, then every column 

referenced in SELECT must be either
– Aggregated, or
– A GROUP BY column

• Example: Which students have the highest GPA?
– SELECT SID, MAX(GPA) FROM Student;
SID name age GPA
142 Bart 10 2.3
857 Lisa 8 4.3
123 Milhouse 10 3.1
456 Ralph 8 2.3
... ... ... ...

SID name age GPA
142 Bart 10 2.3
857 Lisa 8 4.3
123 Milhouse 10 3.1
456 Ralph 8 2.3
... ... ... ...

GROUP BY list is empty;
all rows are in one group

SID MAX(GPA)
? 4.3

32

HAVING
• SELECT… FROM… WHERE… GROUP BY…

HAVING condition;
• Operational semantics

– Compute FROM (××××)
– Compute WHERE (σ)
– Compute GROUP BY: group results according to the 

values of GROUP BY columns

– Compute HAVING (another σ over the groups)
– Compute SELECT for each group (π)

33

HAVING examples
• Find the average GPA for each age group over 10

– SELECT age, AVG(GPA)
FROM Student
GROUP BY age
HAVING age > 10;

– Can be written using WHERE
• List the average GPA for each age group with more than 

a hundred students
– SELECT age, AVG(GPA)

FROM Student
GROUP BY age
HAVING COUNT(*) > 100;

34

Next time

• NULLs

• Outerjoins

• Updates

• Constraints

• Triggers


