
1

Transaction Processing:
Concurrency Control

CPS 216
Advanced Database Systems

2

ACID
• Atomicity

– Transactions are either done or not done
– They are never left partially executed

• Consistency
– Transactions should leave the database in a consistent state

• Isolation
– Transactions must behave as if they were executed in isolation

• Durability
– Effects of completed transactions are resilient against failures

3

Transaction in SQL
• (Implicit beginning of transaction)

SELECT …;
UPDATE …;
……
ROLLBACK | COMMIT;

• ROLLBACK (a.k.a. transaction abort)
– Will undo the the partial effects of the transaction
– May be initiated by the DBMS

• For example, when some statement in the transaction
violates a database constraint

4

Concurrency control
• Goal: ensure the “I” (isolation) in ACID

A B C

T1:
read(A);
write(A);
read(B);
write(B);
commit;

T2:
read(A);
write(A);
read(C);
write(C);
commit;

5

Good versus bad schedules

T1 T2

r(A)
w(A)
r(B)
w(B)

r(A)
w(A)
r(C)
w(C)

T1 T2

r(A)
w(A)

r(A)
w(A)

r(B)
r(C)

w(B)
w(C)

T1 T2

r(A)
r(A)

w(A)
w(A)

r(B)
r(C)

w(B)
w(C)

Good! Good! (But why?)Bad!

Read 400
Read 400

Write
400 – 100 Write

400 – 50

6

Serial schedule
• Execute transactions in order, with no

interleaving of operations
– T1.r(A), T1.w(A), T1.r(B), T1.w(B), T2.r(A), T2.w(A),

T2.r(C), T2.w(C)
– T2.r(A), T2.w(A), T2.r(C), T2.w(C), T1.r(A), T1.w(A),

T1.r(B), T1.w(B)
– Isolation achieved by definition!

• Problem: no concurrency at all
• Question: how to reorder schedule to allow more

concurrency

2

7

Conflicting operations
• Two operations on the same data item conflict if

at least one of the operations is a write
– r(X) and w(X) conflict
– w(X) and r(X) conflict
– w(X) and w(X) conflict
– r(X) and r(X) do not
– r/w(X) and r/w(Y) do not

• Order of conflicting operations matters
– If T1.r(A) precedes T2.w(A), then conceptually, T1

should precede T2 8

Precedence graph
• A node for each transaction
• A directed edge from Ti to Tj if an operation of Ti

precedes and conflicts with an operation of Tj in
the schedule

T1 T2

r(A)
w(A)

r(A)
w(A)

r(B)
r(C)

w(B)
w(C)

T1 T2

r(A)
r(A)

w(A)
w(A)

r(B)
r(C)

w(B)
w(C)

T1

T2

Good:
no cycle

T1

T2

Bad:
cycle

9

Conflict-serializable schedule
• A schedule is conflict-serializable iff its

precedence graph has no cycles
• A conflict-serializable schedule is equivalent to

some serial schedule (and therefore is “good”)
– In that serial schedule, transactions are executed in the

topological order of the precedence graph
– You can get to that serial schedule by repeatedly

swapping adjacent, non-conflicting operations from
different transactions

10

Locking
• Rules

– If a transaction wants to read an object, it must first
request a shared lock (S mode) on that object

– If a transaction wants to modify an object, it must first
request an exclusive lock (X mode) on that object

– Allow one exclusive lock, or multiple shared locks

Mode of lock(s)
currently held

by other transactions

Mode of the lock requested

Grant the lock?
S X

S Yes No
X No No

Compatibility matrix

11

Basic locking is not enough
T1 T2

r(A)
w(A)

r(A)
w(A)

r(B)
w(B)

r(B)
w(B)

lock-X(A)

lock-X(B)

unlock(B)

unlock(A)
lock-X(A)

unlock(A)

unlock(B)
lock-X(B)

Possible schedule
under locking

But still not
conflict-serializable!

T1

T2

Read 100
Write 100+1

Read 101
Write 101*2

Read 100
Write 100*2

Read 200
Write 200+1

Add 1 to both A and B
(preserve A=B)

Multiply both A and B by 2
(preserves A=B)

A <> B!
12

Two-phase locking (2PL)
• All lock requests precede all unlock requests

– Phase 1: obtain locks, phase 2: release locks
T1 T2

r(A)
w(A)

r(A)
w(A)

r(B)
w(B)

r(B)
w(B)

lock-X(A)

lock-X(B)

unlock(B)

unlock(A) lock-X(A)

lock-X(B)

Cannot obtain the lock on B
until T1 unlocks

T1 T2

r(A)
w(A)

r(A)
w(A)

r(B)
w(B)

r(B)
w(B)

2PL guarantees a
conflict-serializable

schedule

3

13

Problem of 2PL
• T2 has read uncommitted data

written by T1

• If T1 aborts, then T2 must
abort as well

• Cascading aborts possible if
other transactions have read
data written by T2

T1 T2

r(A)
w(A)

r(A)
w(A)

r(B)
w(B)

r(B)
w(B)

Abort!

• What’s worse, what if T2 commits before T1?
– Not recoverable if the system crashes right after T2

commits 14

Strict 2PL

• Only release locks at commit/abort time
– A writer will block all other readers until the writer

commits or aborts

• Used in most commercial DBMS (except Oracle)

15

Deadlocks

Deadlock =
cycle in the wait-for graph

T1 T2

r(A)
w(A)

r(B)
w(B)

r(B) r(A)
w(B) w(A)

lock-X(A)

lock-X(B)

lock-X(B) lock-X(A)
Deadlock!

T1

T2

T1 is waiting for T2 T2 is waiting for T1

16

Dealing with deadlocks
• Impose an order for locking objects

– Must know in advance which objects a transaction will access
• Timeout

– If a transaction has been blocked for too long, just abort
• Prevention

– Idea: abort more often, so blocking is less likely
– Wait/die versus wound/wait

• Detection using wait-for graph
– Idea: deadlock is rare, so only deal it when it becomes an issue
– How often do we detect deadlocks?
– Which transactions do we abort in case of deadlock?

17

Implementation of locking
• Do not rely on transactions themselves to

lock/unlock explicitly
• DBMS inserts lock/unlock requests automatically

SchedulerLock table

Serialized schedule with no
lock/unlock operations

Insert lock/unlock requests
Operations with
lock/unlock requests

Transactions
Streams of operations

Lock info for each object,
including locks currently held
and the request queue 18

SQL transaction isolation levels
• SERIALIZABLE (default)
• Weaker isolations levels

– READ UNCOMMITTED
– READ COMMITTED
– REPEATABLE READ

• Why weaker levels?
– Increase performance by eliminating overhead and

allowing higher degree of concurrency

4

19

READ UNCOMMITTED
• Dirty reads possible (dirty = uncommitted)
• Example: wrong average

T1: T2:
UPDATE Account
SET balance = balance – 200
WHERE number = 142857; SELECT AVG(balance)

FROM Account;
ROLLBACK;

COMMIT;

• Possible cause
– Non-strict locking protocol, or no read lock

20

READ COMMITTED
• No dirty reads, but non-repeatable reads possible
• Example: different averages

T1: T2:
SELECT AVG(balance)

UPDATE Account FROM Account;
SET balance = balance – 200
WHERE number = 142857;
COMMIT;

SELECT AVG(balance)
FROM Account;
COMMIT;

• Possible cause
– Locking is not two-phase

21

REPEATABLE READ
• Reads repeatable, but may see phantoms
• Example: different average (still!)

T1: T2:
SELECT AVG(balance)

INSERT INTO Account FROM Account;
VALUES(428571, 1000);
COMMIT;

SELECT AVG(balance)
FROM Account;
COMMIT;

• Possible cause
– Insertion did not acquire any lock (what to acquire?)

22

Summary of SQL isolation levels

Isolation level / anomaly Dirty reads Non-repeatable reads Phantoms
READ UNCOMMITTED Yes Yes Yes

READ COMMITTED No Yes Yes
REPEATABLE READ No No Yes

SERIALIZABLE No No No

• Criticized for definition in terms of anomalies
– Berenson, Bernstein, Gray, et al. “A critique of ANSI

SQL isolation levels,” SIGMOD 1995

23

Concurrency control without locking

• Optimistic (validation-based)

• Timestamp-based

• Multi-version (Oracle)

24

Optimistic concurrency control
• Locking is pessimistic

– Use blocking to avoid conflicts
– Overhead of locking even if contention is low

• Optimistic concurrency control
– Assume that most transactions do not conflict
– Let them execute as much as possible
– If it turns out that they conflict, abort and restart

5

25

Sketch of protocol
• Read phase: transaction executes, reads from the

database, and writes to a private space
• Validate phase: DBMS checks for conflicts with

other transactions; if conflict is possible, abort
and restart
– Requires maintaining a list of objects read and written

by each transaction
• Write phase: copy changes in the private space to

the database
26

Pessimistic versus optimistic
• Overhead of locking versus overhead of

validation and copying private space
• Blocking versus aborts and restarts
• Agrawal, Carey, and Livny. “Concurrency control

performance modeling: alternatives and implications,”
TODS 12(4), 1987
– Locking has better throughput for environments with

medium-to-high contention
– Optimistic concurrency control is better when

resource utilization is low enough

27

Timestamp-based
• Associate each database object with a read

timestamp and a write timestamp
• Assign a timestamp to each transaction

• Timestamp order is commit order

• When transaction reads/writes an object, check
the object’s timestamp for conflict with a younger
transaction; if so, abort and restart

• Problems
– Even reads require writes (of object timestamps)
– Ensuring recoverability is hard (plenty of dirty reads)

28

Multi-version concurrency control
• Maintain versions for each database object

– Each write creates a new version
– Each read is directed to an appropriate version
– Conflicts are detected in a similar manner as

timestamp concurrency control
• In addition to the problems inherited from

timestamp concurrency control
– Pro: Reads are never blocked
– Con: Multiple versions need to be maintained

• Oracle uses some variant of this scheme

29

Summary
• Covered

– Conflict-serializability
– 2PL, strict 2PL
– Deadlocks
– Overview of other concurrency-control methods

• Not covered
– View-serializability
– Hierarchical locking
– Predicate locking and tree locking

30

Next time

Recovery

SQL triggers and programming interface

