Transaction Processing:
Concurrency Control

CPS 216
Advanced Database Systems

ACID

» Atomicity
- Transactions are either done or not done
— They are never left partially executed
* Consistency
— Transactions should leave the database in a consistent state
* Isolation
— Transactions must behave as if they were executed in isolation
* Durability
— Effects of completed transactions are resilient against failures

2

Transaction in SQL

* (Implicit beginning of transaction)
SELECT ...;
UPDATE ...;

ROLLBACK | COMMIT;

* ROLLBACK (a.k.a. transaction abort)
— Will undo the the partial effects of the transaction
— May be initiated by the DBMS

« For example, when some statement in the transaction
violates a database constraint

Concurrency control

 Goal: ensure the “I” (isolation) in ACID

Ty T,
read(A); read(A);
write(A); write(A);
read(B); read(C);
write(B); write(C);
commit; commit;

Good versus bad schedules

Good! Bad! Good! (But why?)
Tl TZ Tl TZ Tl TZ
r(A) r(A) r(A)
W(A) Read 400 r(A) W(A)
r(B) write W(A) [Read 400 r(A)
W(B) 400 - 100 W(A) Write W(A)
r(A) r(B) 400-50 r(B)
w(A) r(C) r(C)
r(C) w(B) w(B)
w(C) w(C) w(C)

Serial schedule

» Execute transactions in order, with no
interleaving of operations
= T.r(A), TLW(A), T1.1(B), T1-w(B), T,.r(A), T.w(A),
T,.1(C), T,w(C)
= To.1(A), T, W(A), To.1(C), To.wW(C), To.r(A), Ti.w(A),
To.r(B), TL.w(B)
— Isolation achieved by definition!
 Problem: no concurrency at all

 Question: how to reorder schedule to allow more
concurrency

6

Conflicting operations

» Two operations on the same data item conflict if
at least one of the operations is a write
- r(X) and w(X) conflict
—w(X) and r(X) conflict
— w(X) and w(X) conflict
—r(X) and r(X) do not
— r/w(X) and r/w(Y) do not
* Order of conflicting operations matters

— If T,.r(A) precedes T,.w(A), then conceptually, T,
should precede T, 7

Precedence graph

» A node for each transaction

* Adirected edge from T; to T, if an operation of T;
precedes and conflicts with an operation of T; in
the schedule

L1t () AP L ()
1(A) r(A
W(A)\r(A) Q w(/1> <(A) Q

Conflict-serializable schedule

A schedule is conflict-serializable iff its
precedence graph has no cycles

* A conflict-serializable schedule is equivalent to
some serial schedule (and therefore is “good”)
— In that serial schedule, transactions are executed in the
topological order of the precedence graph

— You can get to that serial schedule by repeatedly
swapping adjacent, non-conflicting operations from
different transactions

W(A) W(A)
G) Good: 1G] Bad:
"© nocycle "©) cycle
w(B) w(B) 3
w(C) w(C)
Locking
* Rules

— If a transaction wants to read an object, it must first
request a shared lock (S mode) on that object

— If a transaction wants to modify an object, it must first
request an exclusive lock (X mode) on that object

— Allow one exclusive lock, or multiple shared locks
Mode of the lock requested

Mode of lock(s) SR
currently held S [Yes| No | Grant the lock?
by other transactions X | No | No

Compatibility matrix

Basic locking is not enough

AddltobothAandB T, , T, Multiplyboth Aand Bby2

unlock

(preserve A=B) ____1 (preserves A=B)
lock-X(A)
Read 100 r(A)
Write 100+1 W(A
unlock(A;
ock-X(A)
Possible schedule I(A) Read101 0
under locking W{A) Write 101*2
unlock(A)
But still not I(zck-X(B)
conflict-serializable! r(B) Read 100
W(B) Write 100*2
unloCk(B)
lock-X(B)/
Read200 r(B) A<>B!
Write 200+1 WQ%; 1

Two-phase locking (2PL)

« All lock requests precede all unlock requests
— Phase 1: obtain locks, phase 2: release locks

T T, T, T,
lock-X(A) 2PL guarantees a —
1(A) conflict-serializable r(A)
d A
|Ock>x"("B()) schedule w(A) "
unlock(A) lock-X(A) wih)
r(A) r(B)
W) w(B)
lock-X(B) r(B)
r(B) w(B)
B
r(B) e Cannot obtain the lock on B
w(B) until T, unlocks "
unlock(B) «~

Problem of 2PL

T | T T,has read uncommitted data

"(A) written by T,

"® 1w« If T, aborts, then T, must

. wA) abort as well

w(B) » Cascading aborts possible if
\r,g?é) other transactions have read

e data written by T,

» What’s worse, what if T, commits before T,?
— Not recoverable if the system crashes right after T,

Strict 2PL

* Only release locks at commit/abort time

— A writer will block all other readers until the writer
commits or aborts

» Used in most commercial DBMS (except Oracle)

commits .
Deadlocks
LT P
lock X4V Deadlock =
w(A) | lock-x(B) cycle in the wait-for graph
r(B)
w(B)
lock-X(B) | lock-X(A) 0
————— Deadlock! T, is waiting for T, T, is waiting for T,
r(B) | r(A)
w(B) | w(A)

Dealing with deadlocks

* Impose an order for locking objects
— Must know in advance which objects a transaction will access
e Timeout
- If a transaction has been blocked for too long, just abort
* Prevention
— ldea: abort more often, so blocking is less likely
— Wait/die versus wound/wait
« Detection using wait-for graph
— ldea: deadlock is rare, so only deal it when it becomes an issue
— How often do we detect deadlocks?
— Which transactions do we abort in case of deadlock? 16

Implementation of locking

Do not rely on transactions themselves to
lock/unlock explicitly

» DBMS inserts lock/unlock requests automatically

Transactions
Streams of operations

Insert lock/unlock requests
Operations with
lock/unlock requests]

Lock table — Scheduler

Lock info for each object,
including locks currently held
and the request queue

Serialized schedule with no
lock/unlock oper%ions

SQL transaction isolation levels

» SERIALIZABLE (default)
» Weaker isolations levels
— READ UNCOMMITTED
- READ COMMITTED
- REPEATABLE READ
» Why weaker levels?

— Increase performance by eliminating overhead and
allowing higher degree of concurrency

READ UNCOMMITTED

» Dirty reads possible (dirty = uncommitted)

. Example: wrong average
T1: T2:
UPDATE Account
SET balance = balance — 200
WHERE number = 142857 SELECT AVG(balance)
FROM Account;

ROLLBACK;
COMMIT;

* Possible cause
— Non-strict locking protocol, or no read lock

READ COMMITTED

« No dirty reads, but non-repeatable reads possible
» Example: different averages

T1: T2:
SELECT AVG(balance)
UPDATE Account FROM Account;

SET balance = balance — 200
WHERE number = 142857;

COMMIT;
SELECT AVG(balance)
FROM Account;
COMMIT;
* Possible cause
— Locking is not two-phase 2

REPEATABLE READ

* Reads repeatable, but may see phantoms
» Example: different average (still!)

T1: T2:
SELECT AVG(balance)
INSERT INTO Account FROM Account;
VALUES(428571, 1000);
COMMIT;
SELECT AVG(balance)
FROM Account;
COMMIT;

 Possible cause

— Insertion did not acquire any lock (what to acquire?)
21

Summary of SQL isolation levels

Isolation level / anomaly | Dirty reads | Non-repeatable reads | Phantoms
READ UNCOMMITTED Yes Yes Yes
READ COMMITTED No Yes Yes
REPEATABLE READ No No Yes
SERIALIZABLE No No No

« Criticized for definition in terms of anomalies

— Berenson, Bernstein, Gray, et al. “A critique of ANSI
SQL isolation levels,” SIGMOD 1995

Concurrency control without locking

* Optimistic (validation-based)
 Timestamp-based

» Multi-version (Oracle)

23

Optimistic concurrency control

* Locking is pessimistic

— Use blocking to avoid conflicts

— Overhead of locking even if contention is low
 Optimistic concurrency control

— Assume that most transactions do not conflict

— Let them execute as much as possible

— If it turns out that they conflict, abort and restart

Sketch of protocol

» Read phase: transaction executes, reads from the
database, and writes to a private space

* Validate phase: DBMS checks for conflicts with
other transactions; if conflict is possible, abort
and restart
— Requires maintaining a list of objects read and written

by each transaction

» Write phase: copy changes in the private space to

the database

25

Pessimistic versus optimistic

» Overhead of locking versus overhead of
validation and copying private space

« Blocking versus aborts and restarts
» Agrawal, Carey, and Livny. “Concurrency control
performance modeling: alternatives and implications,”
TODS 12(4), 1987
— Locking has better throughput for environments with
medium-to-high contention
— Optimistic concurrency control is better when
resource utilization is low enough

Timestamp-based

Associate each database object with a read
timestamp and a write timestamp
Assign a timestamp to each transaction

» Timestamp order is commit order
When transaction reads/writes an object, check
the object’s timestamp for conflict with a younger
transaction; if so, abort and restart
Problems
— Even reads require writes (of object timestamps)
— Ensuring recoverability is hard (plenty of dirty reads)

27

Multi-version concurrency control

Maintain versions for each database object
— Each write creates a new version
— Each read is directed to an appropriate version

— Conflicts are detected in a similar manner as
timestamp concurrency control

In addition to the problems inherited from
timestamp concurrency control

— Pro: Reads are never blocked

— Con: Multiple versions need to be maintained
* Oracle uses some variant of this scheme

Summary

Covered

— Conflict-serializability

— 2PL, strict 2PL

— Deadlocks

— Overview of other concurrency-control methods
Not covered

- View-serializability

— Hierarchical locking

— Predicate locking and tree locking

29

Next time

Recovery

SQL triggers and programming interface

