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Odds and Ends of SQL

CPS 216
Advanced Database Systems
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Outline

• Recursion

• Triggers

• Application programming
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Recursion

• Example: find Bart’s ancestors
• “Ancestor” has a recursive definition
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Recursion in SQL
• SQL2 has no recursion

– You can find Bart’s parents, grandparents, great 
grandparents, etc.

– But you cannot find all his ancestors in a single query
• SQL3 proposal has recursion

– WITH RECURSIVE statements
– Implemented by DB2
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Ancestor query in SQL3
WITH

RECURSIVE Ancestor(ancestor, descendent) AS
(SELECT * FROM ParentChild)
UNION
(SELECT a1.ancestor, a2.descendent
FROM Ancestor AS a1, Ancestor AS a2
WHERE a1.descendent = a2.ancestor)

SELECT ancestor
FROM Ancestor
WHERE descendent = ’Bart’;

6

Linear recursion
• Technically, SQL3 only requires support of linear 

recursion: each RECURSIVE definition has at 
most one reference to a recursively-defined table

• Can we make the ancestor query linear?
WITH

RECURSIVE Ancestor(ancestor, descendent) AS
(SELECT * FROM ParentChild)
UNION

SELECT ancestor FROM Ancestor
WHERE descendent = ’Bart’;



3

7

Fixed point of a function
• If f: T → T is a function from a type T to itself, a fixed 

point of f is a value x such that f(x) = x
• Example: What is the fixed point of f(x) = x / 2?

–

• To compute a fixed point of f
– Start with a “seed”: x ← x0

– Compute f(x)
• If f(x) = x, stop; x is fixed point of f
• Otherwise, x ← f(x); repeat

• Example: compute the fixed point of f(x) = x / 2
–
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Fixed point of a query
• A query q is just a function that maps an input 

table to an output table, so a fixed point of q is a 
table T such that q(T) = T

• To compute fixed point of q
– Start with an empty table: T ← ∅
– Evaluate q over T

• If the result is identical to T, stop; T is a fixed point
• Otherwise, let T be the new result; repeat

– Starting from ∅ produces the unique minimal fixed 
point (assuming q is monotonic)
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Finding ancestors
RECURSIVE Ancestor(ancestor, descendent) AS

(SELECT * FROM ParentChild)
UNION

(SELECT parent, descendent
FROM ParentChild, Ancestor
WHERE child = ancestor)
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Intuition behind fixed-point iteration
• Initially, we know nothing about ancestor-

descendent relationships
• In the first step, we deduce that parents and 

children form ancestor-descendent relationships
• In each subsequent steps, we use the facts 

deduced in previous steps to get more ancestor-
descendent relationships

• We stop when no new facts can be proven
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Mixing negation with recursion
• If q is non-monotonic

• Want to know more?
– Maybe another, more theoretical database course
– Or take an AI course
– Or read the two-volume Ullman book, Database and 

Knowledge-Base Systems
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Trigger
• A trigger is an event-condition-action rule

– When event occurs, test condition; if condition is 
satisfied, execute action

– An “active database” feature
• Example:

– Event: whenever there comes a new student…
– Condition: with GPA higher than 3.0…
– Action: then make him/her take CPS 216!
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Trigger example
CREATE TRIGGER CPS216AutoRecruit

AFTER INSERT ON Student
REFERENCING NEW AS newStudent
FOR EACH ROW
WHEN (newStudent.GPA > 3.0)
INSERT INTO Enroll

VALUES(newStudent.SID, ’CPS 216’);
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Trigger options
• Possible events include:

– INSERT ON table
– DELETE ON table
– UPDATE [OF column] ON table

• Trigger can be activated:
– FOR EACH ROW modified
– FOR EACH STATEMENT that performs 

modification
• Action can be executed:

– AFTER or BEFORE the triggering event
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Transition variables
• OLD: the modified row before the triggering event
• NEW: the modified row after the triggering event
• OLD_TABLE: a hypothetical read-only table containing 

all modified rows before the triggering event
• NEW_TABLE: a hypothetical table containing all 

modified rows after the triggering event
• Not all of them make sense all the time, e.g.

– AFTER INSERT statement triggers

– BEFORE DELETE row triggers

– etc. 
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Statement trigger example
CREATE TRIGGER CPS216AutoRecruit

AFTER INSERT ON Student
REFERENCING NEW_TABLE AS newStudents
FOR EACH STATEMENT
INSERT INTO Enroll

SELECT SID, ’CPS 216’
FROM newStudents
WHERE SID NOT IN

(SELECT SID FROM Enroll
WHERE CID = ’CPS 216’);
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Another trigger example
Give faculty a raise if all GPAs increase (in one update)
CREATE TRIGGER AutoRaise

AFTER UPDATE OF GPA ON Student
REFERENCING OLD_TABLE AS o

NEW_TABLE AS n
FOR EACH STATEMENT
WHEN (

))
UPDATE Faculty SET salary = salary + 1000;

• A row trigger would be hard to write and inefficient
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Yet another trigger example
Never give faculty more than 50% raise in one update
CREATE TRIGGER NotTooGreedy

BEFORE UPDATE OF salary ON Faculty
REFERENCING OLD AS o NEW AS n
FOR EACH ROW
WHEN (n.salary > 1.5 * o.salary)
SET n.salary = 1.5 * o.salary;

• BEFORE triggers are often used to “condition” data
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Implementation issues
• Recursive firing of triggers

– Action of one trigger causes another trigger to fire
– Can get into an infinite loop

• Interaction with constraints (very tricky to get right!)
– When do we check if a triggering event violates constraints?

• After a BEFORE trigger (so the trigger can fix a potential violation)
• Before an AFTER trigger

– AFTER triggers also see the effects of, say, cascaded deletes 
caused by referential integrity constraint violations

(Based on DB2; no two DBMS implement the same policy!)
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Programming in SQL

• Idea: Instead of making SQL do more, just use it 
together with a general-purpose programming 
language

�Embedded SQL

�JDBC (and ODBC, Perl DBI, etc.)
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Embedded SQL
EXEC SQL BEGIN DECLARE …
float thisGPA; …
EXEC SQL FETCH …
printf(“%f”, thisGPA); …

Host program with special SQL
directives and commands

float thisGPA; …
sql(“SELECT …”); …
printf(“%f”, thisGPA); …

Host program with special DBMS
API calls

Preprocess using the preprocessor provided by DBMS

Compile and link with libraries provided by DBMS 

Binary executable

Client DBMS Server
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Issues when embedding SQL
• Which statements are SQL?

– A special preprocessor directive EXEC SQL
• How are the values passed from the host program 

into SQL commands?
– Explicitly declared shared variables that are accessible 

to both SQL and the host program (preprocessor will 
insert conversion code if necessary)

• How are the results of SQL queries returned into 
program variables?
– For a query returns a scalar, use SELECT INTO
– For a query returns a set, use a cursor
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Embedded SQL example
EXEC SQL BEGIN DECLARE SECTION;
int thisSID; float thisGPA;
EXEC SQL END DECLARE SECTION;

EXEC SQL DECLARE CPS216Student CURSOR FOR
SELECT SID, GPA FROM Student
WHERE SID IN (SELECT SID FROM Enroll

WHERE CID = ’CPS 216’)
FOR UPDATE;
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More embedded SQL
EXEC SQL OPEN CPS216Student;
EXEC WHENEVER NOT FOUND DO break;
while (1) {

EXEC SQL FETCH CPS216Student INTO :thisSID, :thisGPA;
printf(“SID %d: current GPA is %f\n”, thisSID, thisGPA);
printf(“Enter new GPA: ”);
scanf(“%f”, &thisGPA);
EXEC SQL UPDATE Student SET GPA = :thisGPA

WHERE CURRENT OF CPS216Student;
}
EXEC SQL CLOSE CPS216Student;
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Dynamic SQL
• Embedded SQL is fine for “canned” queries, but how do 

we write a generic query interface?
• Two special statements to make it dynamic

EXEC SQL BEGIN DECLARE SECTION;
char query[MAX_Q_LEN];
EXEC SQL END DECLAR SECTION;
while (1) {

/* issue SQL> prompt */
/* read user input into query */
EXEC SQL PREPARE q FROM :query;
EXEC SQL EXECUTE q;

}
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Limitations of embedded SQL

• Not very portable
• Cannot talk to different DBMS at the same time
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JDBC
• Solution: one more level of indirection through 

drivers
– Same idea as ODBC, Perl DBI, etc.

Application

Oracle Oracle DB2

Driver Driver
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JDBC example

Connection conn =
DrvierManager.getConnection(url, uid, password);

Statement stmt = conn.createStatement( );
ResultSet rs = stmt.executeQuery(“SELECT * FROM Student”);
while (rs.next( )) {

int sid = rs.getInt(1);
String name = rs.getString(2);
System.out.println(“SID: ” + sid + “ name: ” + name);

}
stmt.close( );
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More JDBC example
conn.setTransactionIsolation(TRANSACTION_SERIALIZABLE);
conn.setAutoCommit(false);

PreparedStatement pstmt =
conn.prepareStatement
(“INSERT INTO Student(SID, name) VALUES(?, ?)”);

// read sid and name from input
pstmt.setInt(1, sid);
pstmt.setString(2, name);
pstmt.execute();
pstmt.close();
conn.commit();

30

Review of introductory materials
• Relational model and relational algebra
• Relational design theory

– FD, MVD, BCNF…
• SQL

– Query: SFWGHO, subqueries, NULL, recursion
– Constraints and triggers

• Transaction processing
– Concurrency control and recovery

• Programming with SQL
– Embedded SQL
– JDBC


