
1

Odds and Ends of SQL

CPS 216
Advanced Database Systems

2

Outline

• Recursion

• Triggers

• Application programming

3

Recursion

• Example: find Bart’s ancestors
• “Ancestor” has a recursive definition

Ape

Abe

Homer Marge

Bart Lisa

parent child
Homer Bart
Homer Lisa
Marge Bart
Marge Lisa
Abe Homer
Ape Abe

ParentChild(parent, child)

2

4

Recursion in SQL
• SQL2 has no recursion

– You can find Bart’s parents, grandparents, great
grandparents, etc.

– But you cannot find all his ancestors in a single query
• SQL3 proposal has recursion

– WITH RECURSIVE statements
– Implemented by DB2

5

Ancestor query in SQL3
WITH

RECURSIVE Ancestor(ancestor, descendent) AS
(SELECT * FROM ParentChild)
UNION
(SELECT a1.ancestor, a2.descendent
FROM Ancestor AS a1, Ancestor AS a2
WHERE a1.descendent = a2.ancestor)

SELECT ancestor
FROM Ancestor
WHERE descendent = ’Bart’;

6

Linear recursion
• Technically, SQL3 only requires support of linear

recursion: each RECURSIVE definition has at
most one reference to a recursively-defined table

• Can we make the ancestor query linear?
WITH

RECURSIVE Ancestor(ancestor, descendent) AS
(SELECT * FROM ParentChild)
UNION

SELECT ancestor FROM Ancestor
WHERE descendent = ’Bart’;

3

7

Fixed point of a function
• If f: T → T is a function from a type T to itself, a fixed

point of f is a value x such that f(x) = x
• Example: What is the fixed point of f(x) = x / 2?

–

• To compute a fixed point of f
– Start with a “seed”: x ← x0

– Compute f(x)
• If f(x) = x, stop; x is fixed point of f
• Otherwise, x ← f(x); repeat

• Example: compute the fixed point of f(x) = x / 2
–

8

Fixed point of a query
• A query q is just a function that maps an input

table to an output table, so a fixed point of q is a
table T such that q(T) = T

• To compute fixed point of q
– Start with an empty table: T ← ∅
– Evaluate q over T

• If the result is identical to T, stop; T is a fixed point
• Otherwise, let T be the new result; repeat

– Starting from ∅ produces the unique minimal fixed
point (assuming q is monotonic)

9

Finding ancestors
RECURSIVE Ancestor(ancestor, descendent) AS

(SELECT * FROM ParentChild)
UNION

(SELECT parent, descendent
FROM ParentChild, Ancestor
WHERE child = ancestor)

parent child
Homer Bart
Homer Lisa
Marge Bart
Marge Lisa
Abe Homer
Ape Abe

ancestor descendent

ancestor descendent
Homer Bart
Homer Lisa
Marge Bart
Marge Lisa
Abe Homer
Ape Abe

ancestor descendent
Homer Bart
Homer Lisa
Marge Bart
Marge Lisa
Abe Homer
Ape Abe
Abe Bart
Abe Lisa
Ape Homer

ancestor descendent
Homer Bart
Homer Lisa
Marge Bart
Marge Lisa
Abe Homer
Ape Abe
Abe Bart
Abe Lisa
Ape Homer
Ape Bart
Ape Lisa

4

10

Intuition behind fixed-point iteration
• Initially, we know nothing about ancestor-

descendent relationships
• In the first step, we deduce that parents and

children form ancestor-descendent relationships
• In each subsequent steps, we use the facts

deduced in previous steps to get more ancestor-
descendent relationships

• We stop when no new facts can be proven

11

Mixing negation with recursion
• If q is non-monotonic

• Want to know more?
– Maybe another, more theoretical database course
– Or take an AI course
– Or read the two-volume Ullman book, Database and

Knowledge-Base Systems

12

Trigger
• A trigger is an event-condition-action rule

– When event occurs, test condition; if condition is
satisfied, execute action

– An “active database” feature
• Example:

– Event: whenever there comes a new student…
– Condition: with GPA higher than 3.0…
– Action: then make him/her take CPS 216!

5

13

Trigger example
CREATE TRIGGER CPS216AutoRecruit

AFTER INSERT ON Student
REFERENCING NEW AS newStudent
FOR EACH ROW
WHEN (newStudent.GPA > 3.0)
INSERT INTO Enroll

VALUES(newStudent.SID, ’CPS 216’);

14

Trigger options
• Possible events include:

– INSERT ON table
– DELETE ON table
– UPDATE [OF column] ON table

• Trigger can be activated:
– FOR EACH ROW modified
– FOR EACH STATEMENT that performs

modification
• Action can be executed:

– AFTER or BEFORE the triggering event

15

Transition variables
• OLD: the modified row before the triggering event
• NEW: the modified row after the triggering event
• OLD_TABLE: a hypothetical read-only table containing

all modified rows before the triggering event
• NEW_TABLE: a hypothetical table containing all

modified rows after the triggering event
• Not all of them make sense all the time, e.g.

– AFTER INSERT statement triggers

– BEFORE DELETE row triggers

– etc.

6

16

Statement trigger example
CREATE TRIGGER CPS216AutoRecruit

AFTER INSERT ON Student
REFERENCING NEW_TABLE AS newStudents
FOR EACH STATEMENT
INSERT INTO Enroll

SELECT SID, ’CPS 216’
FROM newStudents
WHERE SID NOT IN

(SELECT SID FROM Enroll
WHERE CID = ’CPS 216’);

17

Another trigger example
Give faculty a raise if all GPAs increase (in one update)
CREATE TRIGGER AutoRaise

AFTER UPDATE OF GPA ON Student
REFERENCING OLD_TABLE AS o

NEW_TABLE AS n
FOR EACH STATEMENT
WHEN (

))
UPDATE Faculty SET salary = salary + 1000;

• A row trigger would be hard to write and inefficient

18

Yet another trigger example
Never give faculty more than 50% raise in one update
CREATE TRIGGER NotTooGreedy

BEFORE UPDATE OF salary ON Faculty
REFERENCING OLD AS o NEW AS n
FOR EACH ROW
WHEN (n.salary > 1.5 * o.salary)
SET n.salary = 1.5 * o.salary;

• BEFORE triggers are often used to “condition” data

7

19

Implementation issues
• Recursive firing of triggers

– Action of one trigger causes another trigger to fire
– Can get into an infinite loop

• Interaction with constraints (very tricky to get right!)
– When do we check if a triggering event violates constraints?

• After a BEFORE trigger (so the trigger can fix a potential violation)
• Before an AFTER trigger

– AFTER triggers also see the effects of, say, cascaded deletes
caused by referential integrity constraint violations

(Based on DB2; no two DBMS implement the same policy!)

20

Programming in SQL

• Idea: Instead of making SQL do more, just use it
together with a general-purpose programming
language

�Embedded SQL

�JDBC (and ODBC, Perl DBI, etc.)

21

Embedded SQL
EXEC SQL BEGIN DECLARE …
float thisGPA; …
EXEC SQL FETCH …
printf(“%f”, thisGPA); …

Host program with special SQL
directives and commands

float thisGPA; …
sql(“SELECT …”); …
printf(“%f”, thisGPA); …

Host program with special DBMS
API calls

Preprocess using the preprocessor provided by DBMS

Compile and link with libraries provided by DBMS

Binary executable

Client DBMS Server

8

22

Issues when embedding SQL
• Which statements are SQL?

– A special preprocessor directive EXEC SQL
• How are the values passed from the host program

into SQL commands?
– Explicitly declared shared variables that are accessible

to both SQL and the host program (preprocessor will
insert conversion code if necessary)

• How are the results of SQL queries returned into
program variables?
– For a query returns a scalar, use SELECT INTO
– For a query returns a set, use a cursor

23

Embedded SQL example
EXEC SQL BEGIN DECLARE SECTION;
int thisSID; float thisGPA;
EXEC SQL END DECLARE SECTION;

EXEC SQL DECLARE CPS216Student CURSOR FOR
SELECT SID, GPA FROM Student
WHERE SID IN (SELECT SID FROM Enroll

WHERE CID = ’CPS 216’)
FOR UPDATE;

24

More embedded SQL
EXEC SQL OPEN CPS216Student;
EXEC WHENEVER NOT FOUND DO break;
while (1) {

EXEC SQL FETCH CPS216Student INTO :thisSID, :thisGPA;
printf(“SID %d: current GPA is %f\n”, thisSID, thisGPA);
printf(“Enter new GPA: ”);
scanf(“%f”, &thisGPA);
EXEC SQL UPDATE Student SET GPA = :thisGPA

WHERE CURRENT OF CPS216Student;
}
EXEC SQL CLOSE CPS216Student;

9

25

Dynamic SQL
• Embedded SQL is fine for “canned” queries, but how do

we write a generic query interface?
• Two special statements to make it dynamic

EXEC SQL BEGIN DECLARE SECTION;
char query[MAX_Q_LEN];
EXEC SQL END DECLAR SECTION;
while (1) {

/* issue SQL> prompt */
/* read user input into query */
EXEC SQL PREPARE q FROM :query;
EXEC SQL EXECUTE q;

}

26

Limitations of embedded SQL

• Not very portable
• Cannot talk to different DBMS at the same time

27

JDBC
• Solution: one more level of indirection through

drivers
– Same idea as ODBC, Perl DBI, etc.

Application

Oracle Oracle DB2

Driver Driver

10

28

JDBC example

Connection conn =
DrvierManager.getConnection(url, uid, password);

Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery(“SELECT * FROM Student”);
while (rs.next()) {

int sid = rs.getInt(1);
String name = rs.getString(2);
System.out.println(“SID: ” + sid + “ name: ” + name);

}
stmt.close();

29

More JDBC example
conn.setTransactionIsolation(TRANSACTION_SERIALIZABLE);
conn.setAutoCommit(false);

PreparedStatement pstmt =
conn.prepareStatement
(“INSERT INTO Student(SID, name) VALUES(?, ?)”);

// read sid and name from input
pstmt.setInt(1, sid);
pstmt.setString(2, name);
pstmt.execute();
pstmt.close();
conn.commit();

30

Review of introductory materials
• Relational model and relational algebra
• Relational design theory

– FD, MVD, BCNF…
• SQL

– Query: SFWGHO, subqueries, NULL, recursion
– Constraints and triggers

• Transaction processing
– Concurrency control and recovery

• Programming with SQL
– Embedded SQL
– JDBC

