Odds and Ends of SQL

CPS 216
Advanced Database Systems

Outline

« Recursion
* Triggers

 Application programming

Recursion
ParentChild(parent, child) Ape

parent child l

Homer Bart Abe

Homer Lisa

Marge Bart

Marge Lisa Homer Marge
Abe Homer l l
Ape Abe Baft Lisa

» Example: find Bart’s ancestors
» “Ancestor” has a recursive definition

— X is Y’s ancestor if
« X'is Y’s parent, or
« X'is Z’s ancestor and Z is Y’s ancestor

Recursion in SQL

» SQL2 has no recursion

- You can find Bart’s parents, grandparents, great
grandparents, etc.

— But you cannot find all his ancestors in a single query
» SQL3 proposal has recursion

— WITH RECURSIVE statements

— Implemented by DB2

Ancestor query in SQL3

Define ancestor-descendent relationship

WITH

RECURSIVE Ancestor(ancestor, descendent) AS
[(SELECT * FROM ParentChild)}> Base case
UNION Recufrsion
(SELECT al.ancestor, a2.descendent
FROM Ancestor AS al, Ancestor AS a2

WHERE al.descendent = a2.ancestor)

SELECT ancestor
FROM Ancestor
WHERE descendent = ’Bart’;

L Find Bart’s ancestors

5

Linear recursion

« Technically, SQL3 only requires support of linear
recursion: each RECURSIVE definition has at
most one reference to a recursively-defined table

» Can we make the ancestor query linear?

WITH

RECURSIVE Ancestor(ancestor, descendent) AS
(SELECT * FROM ParentChild)
UNION
(SELECT parent, descendent
FROM ParentChild, Ancestor
WHERE child = ancestor)

SELECT ancestor FROM Ancestor

WHERE descendent = "Bart’;

Fixed point of a function

o Iff: T - Tisafunction from a type T to itself, a fixed
point of f is a value x such that f(x) = x
Example: What is the fixed point of f(x) = x / 2?
— 0, because f(0)=0/2=0
» To compute a fixed point of f
— Start with a “seed”: x — X,
— Compute f(x)
« If f(x) = x, stop; x is fixed point of f
* Otherwise, x « f(x); repeat

» Example: compute the fixed point of f(x) = x/ 2
— With seed 1: 1, 1/2, 1/4, 1/8, 1/16, ... - 0

Fixed point of a query

» A query q is just a function that maps an input
table to an output table, so a fixed point of q is a
table T such thatq(T) =T

» To compute fixed point of g
— Start with an empty table: T — O
— Evaluate q over T

« If the result is identical to T, stop; T is a fixed point
 Otherwise, let T be the new result; repeat

»Starting from O produces the unique minimal fixed

point (assuming g is monotonic) ,

Finding ancestors

parent child

Homer Bart
RECURSIVE Ancestor(ancestor, descendent) AS | Homer Lisa
(SELECT * FROM ParentChild) Marge 1 parl
Marge Lisa
UNION Abe Homer
(SELECT parent, descendent Ape Abe
FROM ParentChild, Ancestor
WHERE child = ancestor) RSOOSR ETIAET,
Homer Bart
:ancestor d:lescendent ancestor |descendent Homer Lisa
Homer Bart Marge Bart
Homer Lisa Marge Lisa
ancestor _(descendent Marge Bart Abe Homer Q
Homer Bart -
- Marge Lisa Ape Abe
Homer Lisa
Marge Bart Abe Homer == Abe Bart
- Ape Abe Abe Lisa
Marge Lisa
Abe Bart Ape Homer
Abe Homer -
Ape Abe Abe Lisa Ape Bart g
Ape Homer Ape Lisa

Intuition behind fixed-point iteration

Initially, we know nothing about ancestor-
descendent relationships

In the first step, we deduce that parents and
children form ancestor-descendent relationships
* In each subsequent steps, we use the facts

deduced in previous steps to get more ancestor-
descendent relationships

» We stop when no new facts can be proven

Mixing negation with recursion

* If g is non-monotonic

— The fixed-point iteration may flip-flop and never
converge

— There could be multiple minimal fixed points—so
which one is the right answer?

* Want to know more?
— Maybe another, more theoretical database course
— Or take an Al course

— Or read the two-volume Ullman book, Database and
Knowledge-Base Systems

11

Trigger

* A trigger is an event-condition-action rule

— When event occurs, test condition; if condition is
satisfied, execute action

— An “active database” feature
» Example:
— Event: whenever there comes a new student...
— Condition: with GPA higher than 3.0...
— Action: then make him/her take CPS 216!

Trigger example

CREATE TRIGGER-CRS216AutoRecruit
AFTE Event
REFERE NGINEWAS newStudent
FOR EAC
WHEmmndition

RT INTO Enrott
VALUES(newStudent.@

Action

Trigger options

* Possible events include:

— INSERT ON table

— DELETE ON table

— UPDATE [OF column] ON table
« Trigger can be activated:

— FOR EACH ROW modified

— FOR EACH STATEMENT that performs
modification

 Action can be executed:
— AFTER or BEFORE the triggering event

Transition variables

» OLD: the modified row before the triggering event

* NEW: the modified row after the triggering event

» OLD_TABLE: a hypothetical read-only table containing
all modified rows before the triggering event

* NEW_TABLE: a hypothetical table containing all
modified rows after the triggering event

 Not all of them make sense all the time, e.g.

— AFTER INSERT statement triggers
« Can use only NEW_TABLE

— BEFORE DELETE row triggers
» Can use only OLD

— etc.

Statement trigger example

CREATE TRIGGER CPS216AutoRecruit
AFTER INSERT ON Student
REFERENCING NEW_TABLE AS newStudents
FOR EACH STATEMENT
INSERT INTO Enroll

SELECT SID, 'CPS 216’
FROM newStudents
WHERE GPA > 3.0
AND SID NOT IN
(SELECT SID FROM Enroll
WHERE CID = CPS 216’);

Another trigger example

Give faculty a raise if all GPAs increase (in one update)
CREATE TRIGGER AutoRaise
AFTER UPDATE OF GPA ON Student
REFERENCING OLD_TABLE AS o
NEW_TABLE ASn
FOR EACH STATEMENT
WHEN (NOT EXISTS(SELECT * FROM o, n
WHERE 0.SID = n.SID
AND 0.GPA >=n.GPA))
UPDATE Faculty SET salary = salary + 1000;

» Arow trigger would be hard to write and inefficient ;;

Yet another trigger example

Never give faculty more than 50% raise in one update
CREATE TRIGGER NotTooGreedy
BEFORE UPDATE OF salary ON Faculty
REFERENCING OLD AS 0 NEW ASn
FOR EACH ROW
WHEN (n.salary > 1.5 * o.salary)
SET n.salary = 1.5 * o.salary;

» BEFORE triggers are often used to “condition” data

Implementation issues

* Recursive firing of triggers
— Action of one trigger causes another trigger to fire
— Can get into an infinite loop
* Some DBMS restrict trigger actions
* Most DBMS set a maximum level of recursion (16 in DB2)
« Interaction with constraints (very tricky to get right!)

— When do we check if a triggering event violates constraints?
 After a BEFORE ftrigger (so the trigger can fix a potential violation)
« Before an AFTER trigger

— AFTER triggers also see the effects of, say, cascaded deletes
caused by referential integrity constraint violations

(Based on DB2; no two DBMS implement the same policy!)

Programming in SQL

* |dea: Instead of making SQL do more, just use it
together with a general-purpose programming
language

»Embedded SQL
»JDBC (and ODBC, Perl DBI, etc.)

Embedded SQL

EXEC SQL BEGIN DECLARE
float [hisgpA; Host program with special SQL

EXEC SQL FETCH ... directives and commands
printf(“%f”, thisGPA); ...

l Preprocess using the preprocessor provided by DBMS

float thisGPA; ... Host program with special DBMS

sql(“SELECT ..."); ...
printf(“%f”, thisGPA); ... API calls

lCompiIe and link with libraries provided by DBMS

Client Server

Binary executable

21

Issues when embedding SQL

» Which statements are SQL?
— A special preprocessor directive EXEC SQL

» How are the values passed from the host program
into SQL commands?

— Explicitly declared shared variables that are accessible
to both SQL and the host program (preprocessor will
insert conversion code if necessary)

» How are the results of SQL queries returned into
program variables?

— For a query returns a scalar, use SELECT INTO

— For a query returns a set, use a cursor 2

Embedded SQL example

EXEC SQL BEGIN DECLARE SECTION;
int thisSID; float thisGPA;
EXEC SQL END DECLARE SECTION;
/Declaration of a cursor, used to loop over a set of results
EXEC SQL DECLARE CPS216Student CURSOR FOR
SELECT SID, GPA FROM Student
WHERE SID IN (SELECT SID FROM Enroll
WHERE CID ="CPS 216°)

|FOR UPDATE; I_. You can update through the cursor if

it is clear how to map a result row to a real row in a database table
23

Shared variable
> .
declarations

More embedded SQL

[EXEC SQL OPEN CPS216StudentOpen result set

[EXEC WHENEVER NOT FOUND DO break} Exit condition

while (1) { Read through the cursor Loop
|EXEC SQL FETCH CPS216Student INTO :thisSID, :thisGPA

printf(“SID %d: current GPA is %f\n”, thisSID, thisGPA);

printf(“Enter new GPA: ”);

scanf(“%f”, &thisGPA);

EXEC SQL UPDATE Student SET GPA = :thisGPA|
WHERE CURRENT OF CPS216Student;

1 Update through the cursor

|EXEC SQL CLOSE CPS216Student;|~ Close result set

Dynamic SQL

» Embedded SQL is fine for “canned” queries, but how do
we write a generic query interface?

» Two special statements to make it dynamic

EXEC SQL BEGIN DECLARE SECTION;
char query[MAX_Q_LEN];
EXEC SQL END DECLAR SECTION;

while (1) { _
/* issue SQL> prompt */ Ship query to DBMS and
[* read user input into ql:ig)¢/get it compiled; return a handle q
EXEC SQL PREPARE FROM :query;

} S 0 - e 9™~ Use handle to execute query

25

Limitations of embedded SQL

 Not very portable
» Cannot talk to different DBMS at the same time

» Need to compile the application for each DBMS
because different DBMS use different
preprocessors and different libraries

JDBC

* Solution: one more level of indirection through
drivers

— Same idea as ODBC, Perl DBI, etc.

Application

27

JDBC example

Connecting to the database can easily take

Connection conn = the longest time!
DrvierManager.getConnection(url, uid, password);| Connection

pooling!

Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery(“SELECT * FROM Student”);
while (rs.next()) {

int sid = rs.getint(1);

String name = rs.getString(2);

System.out.printin(“SID: ” + sid + “ name: ” + name);

}

stmt.close(); Executing query and looping through result set

28

More JDBC example

conn.setTransactionlsolation(TRANSACTION_SERIALIZABLE);
conn.setAutoCommit(false); Getting ready for transactions

PreparedStatement pstmt =
conn.prepareStatement
(“INSERT INTO Student(SID, name) VALUES(?, 2)");

/I read sid and name from input
pstmt.setInt(1, sid);
pstmt.setString(2, name);
pstmt.execute();

pstmt.close();

conn.commit(); 29

Performing an insert

Review of introductory materials

* Relational model and relational algebra
* Relational design theory
— FD, MVD, BCNF...
* SQL
— Query: SFWGHO, subqueries, NULL, recursion
— Constraints and triggers
* Transaction processing
— Concurrency control and recovery
» Programming with SQL
— Embedded SQL
- JDBC

