
1

Indexing

CPS 216
Advanced Database Systems

2

Outline

• The basics

• ISAM

• B+-tree

• Next time
– R-tree
– Inverted lists
– Hash indexes

3

Indexing
• Given a value, locate the record(s) with this value

SELECT * FROM R WHERE A = value;
SELECT * FROM R, S WHERE R.A = S.B;

• Other search criteria, e.g.
– Range search

SELECT * FROM R WHERE A > value;
– Keyword search

����������	��
�	� �����

4

Dense and sparse indexes
• Dense: one index entry for each search key value

123 Milhouse 10 3.1
142 Bart 10 2.3
279 Jessica 10 4
345 Martin 8 2.3

456 Ralph 8 2.3
512 Nelson 10 2.1
679 Sherri 10 3.3
697 Terri 10 3.3

857 Lisa 8 4.3
912 Windel 8 3.1

123
456
875

Sparse index
on SID

Bart
Jessica

Lisa
Martin

Milhouse
Nelson
Ralph
Sherri
Terri

Windel

Dense index
on name

• Sparse: one index entry for each block
– Records must be clustered according to search key

5

Dense versus sparse indexes
• Index size

– Sparse index is smaller
• Requirement on records

– Records must be clustered for sparse index
• Lookup

– Sparse index is smaller and may fit in memory
– Dense index can directly tell if a record exists

• Update
– Easier for sparse index

6

Primary and secondary indexes
• Primary index

– Created for the primary key of a table
– Records are usually clustered according to the primary key
– Can be sparse

• Secondary index
– Usually dense

• SQL
– PRIMARY KEY declaration automatically creates a primary

index, UNIQUE key automatically creates a secondary index
– Index can be created on non-key attribute(s)

CREATE INDEX StudentGPAIndex ON Student(GPA);

2

7

ISAM
• What happens if you put a sparse index on top of

another sparse index?
– Indexed Sequential Access Method (more or less)

100, 108,
119, 121

123, 129,
…

901, 907,
…

996, 997,
…… … …Data blocks 192, 197,

…

100, …, 901

100, 123, …, 192 901, …, 996…Index blocks

8

Updates with ISAM

100, 108,
119, 121

123, 129 901, 907,
…

996, 997,
…… … …Data blocks 192, 197,

…

100, …, 901

100, 123, …, 192 901, …, 996…Index blocks

• Overflow and empty data blocks degrade
performance

Example: insert 107

Example: delete 129107Overflow
blocks

9

B+-tree
• Balanced: good performance guarantee
• Disk-based: one node per block; large fan-out

3 5 11 30 35 10
0

10
1

11
0

12
0

13
0

15
0

15
6

17
9

18
0

20
0

30

10
0

12
0

15
0

18
0

Max fan-out: 4

10

Sample B+-tree nodes
Max fan-out: 4

12
0

15
0

18
0

to keys
k < 120

to keys
120 ≤ k < 150

to keys
150 ≤ k < 180

to keys
180 ≤ k

Non-leaf

12
0

13
0

to records with these k values;
or, store records directly in leaves

to next leaf node in sequenceLeaf

11

B+-tree rules
• All leaves at the same lowest level
• All nodes at least half full (except root)

Max # Max # Min # Min #
pointers keys active pointers keys

Non-leaf f f – 1 ceil(f / 2) ceil(f / 2) – 1
Root f f – 1 2 1
Leaf f f – 1 floor(f / 2) floor(f / 2)

12

Query examples

• Range query: … WHERE k > 179 AND k < 200;
– Find 179 and follow next-leaf pointers

3 5 11 30 35 10
0

10
1

11
0

12
0

13
0

15
0

15
6

17
9

18
0

20
0

30

10
0

12
0

15
0

18
0

Max fan-out: 4

17
9

• Lookup: SELECT * FROM R WHERE k = 179;

3

13

An insertion example (slide 1)

• Insert a record with search key value 152
10

0
10

1
11

0

12
0

13
0

15
0

15
6

17
9

18
0

20
0

10
0

12
0

15
0

18
0

Max fan-out: 4

Split when a node
becomes too full

15
2

14

An insertion example (slide 2)

• Insert a record with search key value 152

10
0

10
1

11
0

12
0

13
0

15
6

17
9

18
0

20
0

10
0

12
0

15
0

18
0

Max fan-out: 4

15
0

15
2

15
6

Split again!

15

An insertion example (slide 3)

• Insert a record with search key value 152

10
0

10
1

11
0

12
0

13
0

15
6

17
9

18
0

20
0

10
0

18
0

Max fan-out: 4

15
0

15
2

12
0

15
0

15
6

Tree grows “up” when root is split
(not shown in this example)

16

A deletion example (slide 1)

• Delete the record with search key value 130

10
0

10
1

11
0

12
0

15
0

15
6

17
9

18
0

20
0

10
0

12
0

15
0

18
0

13
0

Max fan-out: 4

Redistribute when a node
becomes too empty

Right sibling has more than enough keys; steal one!

17

A deletion example (slide 2)

• Delete the record with search key value 130

10
0

10
1

11
0

12
0

15
6

17
9

18
0

20
0

10
0

12
0

15
0

18
0

15
0

Max fan-out: 4

Remember to fix the key
in an ancestor node15

6

18

Another deletion example (slide 1)

• Delete the record with search key value 179

10
0

10
1

11
0

12
0

15
6

17
9

18
0

20
0

10
0

12
0

15
6

18
0

15
0

Max fan-out: 4

Cannot steal from siblings

Coalesce!

4

19

Another deletion example (slide 2)

• Delete the record with search key value 179
10

0
10

1
11

0

12
0

18
0

20
0

10
0

12
0

15
6

18
0

15
0

Max fan-out: 4

15
6

Remember to fix the parentDelete may propagate up;
tree shrinks when

root becomes empty
(not shown in this example)

20

Performance analysis
• How many I/Os are required for each operation?

– h (more or less), where h is the height of the tree
– Plus one or two to manipulate actual records
– Plus O(h) for reorganization (very rare if f is large)
– Minus one if we cache the root in memory

• How big is h?
– Roughly logfan-outn, where n is the number of records
– Fan-out is large (in hundreds)—many keys and

pointers can fit into one block
– A 4-level B+-tree is enough for typical tables

21

B+-tree in practice
• The index of choice in most commercial DBMS
• Complex reorganization for deletion often is not

implemented (e.g., Oracle, Informix)

• Next
– Bulk-loading
– Concurrency control

22

Building a B+-tree from scratch
• Naïve approach

– Start with an empty B+-tree
– Process each record as a B+-tree insertion

• Problem
– Every record require O(h) random I/Os

23

Bulk-loading a B+-tree
• Sort all records (or record pointers) by search key

– Just a few passes (assuming a big enough memory)
– Can have more sequential I/Os
�Now we already have all the leaf nodes!

• Insert each leaf node in order
– No need to look for the proper place to insert
– Only the rightmost path is affected; keep it in memory

…Sorted leaves

Rightmost path

24

Concurrency control for B+-trees
• Naïve approach

– Treat nodes as data objects; use 2PL

• Problem: low concurrency
– Every read/write starts from the root—root becomes

bottleneck for locking
– That’s the same as locking the entire table!

5

25

A simple B+-tree locking protocol
• A lookup transaction can release its lock on the

parent once it gets a lock on the child
• An insert/delete transaction can do the same,

provided that its modification cannot propagate
up to the parent

• Never lock a node twice (even if its parent is
locked all the time)

�More reading in Red Book: “Efficient Locking
for Concurrent Operations on B-Trees”

26

Remember the phantom?
T1: T2:

SELECT * FROM Student
INSERT INTO Student WHERE age = 10;
VALUES(512, “Nelson”, 10, 2.1);
COMMIT; SELECT * FROM Student

WHERE age = 10;
COMMIT;

• T2 first locks all existing rows with age 10
• T1 inserts a new row with age 10
• T2 then sees the new row—phantom!

27

Predicate locking with B+-tree
• If there is a B+-tree on Student(age)

– T2 will lock the B+-tree node containing age value 10
– T1 has to wait for this lock to update the B+-tree
– No more phantom!

• Predicate locking can be generalized to range
predicates, e.g., age > 18 AND age < 20
– Lock the B+-tree node (possibly non-leaf) containing

this range

28

B+-tree versus ISAM
• ISAM is more static; B+-tree is more dynamic
• Performance

– ISAM is more compact (at least initially)
• Fewer levels and I/Os than B+-tree

– Overtime, ISAM may not be balanced
• Cannot provide guaranteed performance as B+-tree does

• Concurrency control
– Much easier with ISAM

• Because index blocks are never updated!

29

B+-tree versus B-tree
• B-tree: why not store records (or record pointers)

in non-leaf nodes?
– These records can be accessed with fewer I/Os

• Problems
– Storing more data in a node decreases fan-out and

increases h
– Records in leaves require more I/Os to access
– Vast majority of the records live in leaves!

