
1

More indexing

CPS 216
Advanced Database Systems

2

Outline

• Last time
– The basics
– ISAM
– B+-trees and variants

• R-tree and variants
• Hash indexes
• Next time: inverted list, GiST

3

R-tree (SIGMOD 1984)

• B-tree: balanced hierarchy of 1-d ranges

30

10
0

12
0

15
0

18
0

• R-tree: balanced hierarchy of N-d regions

(–∞, 100) [100, ∞)

(–∞, 30) [30, 100) [100, 120) [120, 150) [150, 180) [180, ∞)

R7

R1

R2

R3

R4

R5
R6

R8

R6 R7

R8 …

R1 R2 R3 R4 R5



2

4

R-tree lookup

• Problem: search may go down many paths
– Because regions may overlap
– No performance guarantee like B-tree

R7

R1

R2

R3

R4

R5
R6

R8

R6 R7

R8 …

R1 R2 R3 R4 R5

• Where am I?

5

R-tree insertion (slide 1)

Insert R9 into R-tree
• Start from the root
• Pick a region containing R9 and follow the child pointer

– If none contains R9, pick one and grow it to contain R9

– Pick the one that requires the least enlargement

R7

R1

R2

R3

R4

R5
R6

R8

R6 R7

R8 …

R1 R2 R3 R4 R5

R9

R9

R7’
R7’

6

R-tree insertion (slide 2)

• If a node is too full, split
– Try to minimize the total area of bounding boxes

• Quadratic: “seed” with the most wasteful pair; iteratively 
assign regions with strongest “preference”

• Linear: “seed” with distant regions; iteratively assign others

R7’

R1

R2

R3

R4

R5
R6

R8

R6 R7’

R8 …

R1 R2 R3 R4 R5

R9

R9



3

7

R-tree insertion (slide 3)

• Split could propagate all the way up to the root 
(not shown in this example)

R1

R2

R3

R4

R5
R6

R8

R6 R7’’

R8 …

R1 R2

R9

R9R3 R4 R5

R9’

R7’’

R9’

8

R*-tree (SIGMOD 1990)

• R-tree
– Always tries to minimize the area of bounding boxes
– Quadratic splitting algorithm encourages small seeds 

and possibly long and narrow bounding boxes
• R*-tree

– Consider other criteria, e.g.
• Minimize overlap between bounding boxes
• Minimize the margin (perimeter length) of a bounding box

– Forced reinserts
• When a node overflows, reinsert “outer” entries
• They may be picked up by other nodes, thus saving a split

9

R+-tree (VLDB 1987)

• Problem with R-tree
– Regions may overlap
– Search may go down many paths

• R+-tree
– Regions in non-leaf nodes do not overlap
– Search only goes down one path
– But an insertion must now go down many paths!

• R must be inserted into all R+-tree leaves whose bounding 
boxes overlap with R



4

10

Review
• Tree-structured indexes

– ISAM
– B-tree and variants
– R-tree and variants
– Can we generalize? GiST!

• Next: hash-based indexes

11

Static hashing

What if a bucket is full?

key bucket
number

hash
function

h

bucket 0

bucket 1

bucket i

bucket N

ki1
ki2
ki3
…

bucket i

h(k) = i

With records or
record pointers

bucket i
overflow

bucket i
overflow

…

12

Performance of static hashing 
• Depends on the quality of the hash function!

– Best (hopefully average) case:
– Worst case:
– See Knuth vol. 3 for good hash functions

• Rule of thumb: keep utilization at 50%-80%
• How do we cope with growth?

– Extensible hashing
– Linear hashing



5

13

Extensible hashing (TODS 1979)

• Idea 1: use i bits of output by hash function and 
dynamically increase i as needed

• Problem: ++i =
• Idea 2: use a directory

– Just double the directory size
– Many directory entries can point to the same bucket
– Only split overflowed buckets
“One more level of indirection solves everything!”

i
0 1 1 0 1 0 1 1h(k)

14

Extensible hashing example (slide 1)

• Insert k with h(k) = 0101

0101

0
1

1000

1001
0011

1

1

1
Directory Buckets

• Bucket too full?
– ++local depth, split bucket, and ++global depth 

(double the directory size) if necessary
– Allowing some overflow is fine too

Local
depth

Global
depth

15

Extensible hashing example (slide 2)

• Insert 1110, 0000 

0
1

1000

1001
0101

1

2

1
Directory Buckets

00112

00
10
01
11

2
Directory

11100000

• Split again
– No directory doubling this time



6

16

Extensible hashing example (slide 3)

• Insert 0001

1110

1001
0101

2

2

Buckets

00112

00
10
01
11

2
Directory

1000
0000

2

0001

17

Extensible hashing example (slide 4)

1110

1001
0001

2

3

Buckets

00112

00
10
01
11

2
Directory

1000
0000

2

01013

000
100
010
110
001
101
011
111

3
Directory

Delete? Just the reverse:
– – local depth 
merge buckets
– – global depth if possible

18

Summary of extensible hashing
• Pros

– Handles growing files
– No full reorganization

• Cons
– One more level of indirection
– Directory size still doubles
– Sometimes doubling is not enough!



7

19

Linear hashing (VLDB 1980)

• Grow only when utilization exceeds a threshold
• No extra indirection

– Some extra math to figure out the right bucket

Insert 0101
Threshold exceeded; grow!

0000
1010

1111
0 1

i = 1 Number of bits in use = ceil(log2n)
n = 2 Number of primary buckets

0101

20

Linear hashing example (slide 2)

• Grows linearly (hence the name)
• Split the (n – 2floor(log2n))-th bucket (0-based index)

– Intuitively, the first one with the lowest depth
– Not necessarily the bucket being inserted into!

Insert 0001

0001

Insert 1100

1100

Threshold exceeded; grow!

0000 1111
0101

00 1
1010
10

i = 2
n = 3

21

Linear hashing example (slide 3)

0000
1100

0001
0101

00 01
1010
10

1111
11

i = 2
n = 4

Insert 1110
Threshold exceeded; grow!

1110



8

22

Linear hashing example (slide 4)

0000 0001
0101

000 01
1010
1110

10
1111
11

i = 3
n = 5

1100
100

• Look up 1110
– 110 (6-th bucket) is not here
– Then look in the (6 – 2floor(log2n))-th bucket (= 2nd)

23

Summary of Linear hashing
• Pros

– Handles growing files
– No full reorganization
– No extra level of indirection

• Cons
– Still has overflow chains
– May not be able to split an overflow chain right away 

because buckets must be split in sequence

24

Hashing versus B-trees


