More indexing

CPS 216
Advanced Database Systems

Outline

* Last time
— The basics
- ISAM
— B*-trees and variants
» R-tree and variants
« Hash indexes
» Next time: inverted list, GiST

R-tree (SIGMOD 1984)

 B-tree: balanced hierarchy of 1-d ranges

EW (=0, 100) [100,)
/

Wl [z, 30) [30,,100) | [[100, 120) [120, 150) [150,,180) [18Q,)]

» R-tree: balanced hierarchy of N-d regions

|IE=S=s=====3 ===

o D Y
1
[Fo] o | e
N I&—':I_'I
IRle ||R3R4R5| :l Rg 1

R-tree lookup
» Where am I?é}i
R < |
R Ry |

[RiR | [RaRuRs]

 Problem: search may go down many paths
— Because regions may overlap
— No performance guarantee like B-tree

R-tree insertion i 1)

Insert Ry into R-tree
« Start from the root
* Pick a region containing Rq and follow the child pointer

— If none contains Ry, pick one and grow it to contain Ry
— Pick the one that requires the least enlargement

LR R, | [Ry RyREY

R-tree insertion i 2)

« If a node is too full, split

— Try to minimize the total area of bounding boxes

 Quadratic: “seed” with the most wasteful pair; iteratively
assign regions with strongest “preference”

« Linear: “seed” with distant regions; iteratively assign others

LR R, | [Ry RyREY

R-tree insertion i 3)

« Split could propagate all the way up to the root
(not shown in this example)

[ReR, J[Rs R |[Rs R

R*-tree (SIGMOD 1990)

e R-tree

— Always tries to minimize the area of bounding boxes
— Quadratic splitting algorithm encourages small seeds
and possibly long and narrow bounding boxes
* R*-tree
— Consider other criteria, e.g.
« Minimize overlap between bounding boxes
* Minimize the margin (perimeter length) of a bounding box
— Forced reinserts
* When a node overflows, reinsert “outer” entries
« They may be picked up by other nodes, thus saving a sp}!it

R*-tree (vLDB 1987)

* Problem with R-tree
— Regions may overlap
— Search may go down many paths
* R*-tree
— Regions in non-leaf nodes do not overlap
— Search only goes down one path

— But an insertion must now go down many paths!

* R must be inserted into all R*-tree leaves whose bounding
boxes overlap with R

Review

 Tree-structured indexes
- ISAM
— B-tree and variants
— R-tree and variants
— Can we generalize? GiST!
» Next: hash-based indexes

Static hashing
With records or
record pointers
bucket 0 bucket i Ky ——t—>
K., m—t—
bucket 1 k:i ——
hash h(k) =i
key —{ function |, bucket >
h numbe b bucket i bucket i
ucket 1
overflow overflow
What if a bucket is full?
bucket N

Performance of static hashing

 Depends on the quality of the hash function!
— Best (hopefully average) case:
— Worst case:
— See Knuth vol. 3 for good hash functions
* Rule of thumb: keep utilization at 50%-80%
» How do we cope with growth?
— Extensible hashing
— Linear hashing

Extensible hashing (tops 1979)

* ldea 1: use i bits of output by hash function and
dynamically increase i as needed

9
1

* Problem: ++i =
* ldea 2: use a directory
— Just double the directory size

— Many directory entries can point to the same bucket
— Only split overflowed buckets

“One more level of indirection solves everything!”

Extensible hashing example sice 1)
* Insert k with h(k) = 0101

Global Directory Buckets
il i1 Ll 1000
1 Local

depth
\LI 1001

001h10
» Bucket too full?

— ++local depth, split bucket, and ++global depth
(double the directory size) if necessary

— Allowing some overflow is fine too

Extensible hashing example esiice 2)
* Insert 1110, 0000

Director: Buckets Directory

1 11 1000 2 00

111Qypg —— 10

01

_—

HETTEN e gt
0101

2] 0011

* Split again
— No directory doubling this time

Extensible hashing example esiice 3)
Buckets

* Insert 0001 2] 1000

vy \ Directory

2
2l 1110 {00

—— 10

01
2T 1001 1
Z.

0101y
2] 0011 /

\

Extensible hashing example siice 4)

Buckets
2] 1000
Directory / 0000, Directory
3] 000 2] 1110 00
100~ | —
//
010
110~ 311001 11
01— ooo1 \
o 2T 0011
011N Delete? Just the reverse:
111/>< — — local depth
31 0101 merge buckets
— — global depth if possible
17

Summary of extensible hashing

* Pros
— Handles growing files
— No full reorganization
» Cons
— One more level of indirection
— Directory size still doubles
— Sometimes doubling is not enough!

Linear hashing (vLDB 1980)

» Grow only when utilization exceeds a threshold
* No extra indirection
— Some extra math to figure out the right bucket

Insert 0101
0 1 Threshold exceeded; grow!
0000 1111
1010 0101

i=1 Number of bits in use = ceil(log,n)
n=2 Number of primary buckets

Linear hashing example giice 2)

» Grows linearly (hence the name)
+ Split the (n — 2floerllog,M)-th bucket (0-based index)
— Intuitively, the first one with the lowest depth

— Not necessarily the bucket being inserted into!
Insert 0001 Insert 1100

00 1 10 Threshold exceeded; grow
0000 1111 1010
1100 0101 "
.]
i=2 0001
n=3

20

Linear hashing example giice 3)

Insert 1110
Threshold exceeded; grow!

00 01 10 11
0000 0001 1010 1111
1100 0101 1110

3_.
Tl
aN

21

Linear hashing example iice 4)
» Look up 1110
— 110 (6-th bucket) is not here
— Then look in the (6 — 2fleor(log;m)-th bucket (= 2nd)

000 01 10 11 100
0000 0001 1010 1111 1100
0101 1110
i=3
n=5

22

Summary of Linear hashing
* Pros

— Handles growing files
— No full reorganization

— No extra level of indirection
e Cons

— Still has overflow chains

— May not be able to split an overflow chain right away
because buckets must be split in sequence

23

Hashing versus B-trees

2

