
1

More indexing

CPS 216
Advanced Database Systems

2

Outline

• Last time
– The basics
– ISAM
– B+-trees and variants

• R-tree and variants
• Hash indexes
• Next time: inverted list, GiST

3

R-tree (SIGMOD 1984)

• B-tree: balanced hierarchy of 1-d ranges

30

10
0

12
0

15
0

18
0

• R-tree: balanced hierarchy of N-d regions

(–∞, 100) [100, ∞)

(–∞, 30) [30, 100) [100, 120) [120, 150) [150, 180) [180, ∞)

R7

R1

R2

R3

R4

R5
R6

R8

R6 R7

R8 …

R1 R2 R3 R4 R5
4

R-tree lookup

• Problem: search may go down many paths
– Because regions may overlap
– No performance guarantee like B-tree

R7

R1

R2

R3

R4

R5
R6

R8

R6 R7

R8 …

R1 R2 R3 R4 R5

• Where am I?

5

R-tree insertion (slide 1)

Insert R9 into R-tree
• Start from the root
• Pick a region containing R9 and follow the child pointer

– If none contains R9, pick one and grow it to contain R9

– Pick the one that requires the least enlargement

R7

R1

R2

R3

R4

R5
R6

R8

R6 R7

R8 …

R1 R2 R3 R4 R5

R9

R9

R7’
R7’

6

R-tree insertion (slide 2)

• If a node is too full, split
– Try to minimize the total area of bounding boxes

• Quadratic: “seed” with the most wasteful pair; iteratively 
assign regions with strongest “preference”

• Linear: “seed” with distant regions; iteratively assign others

R7’

R1

R2

R3

R4

R5
R6

R8

R6 R7’

R8 …

R1 R2 R3 R4 R5

R9

R9



2

7

R-tree insertion (slide 3)

• Split could propagate all the way up to the root 
(not shown in this example)

R1

R2

R3

R4

R5
R6

R8

R6 R7’’

R8 …

R1 R2

R9

R9R3 R4 R5

R9’

R7’’

R9’

8

R*-tree (SIGMOD 1990)

• R-tree
– Always tries to minimize the area of bounding boxes
– Quadratic splitting algorithm encourages small seeds 

and possibly long and narrow bounding boxes
• R*-tree

– Consider other criteria, e.g.
• Minimize overlap between bounding boxes
• Minimize the margin (perimeter length) of a bounding box

– Forced reinserts
• When a node overflows, reinsert “outer” entries
• They may be picked up by other nodes, thus saving a split

9

R+-tree (VLDB 1987)

• Problem with R-tree
– Regions may overlap
– Search may go down many paths

• R+-tree
– Regions in non-leaf nodes do not overlap
– Search only goes down one path
– But an insertion must now go down many paths!

• R must be inserted into all R+-tree leaves whose bounding 
boxes overlap with R

10

Review
• Tree-structured indexes

– ISAM
– B-tree and variants
– R-tree and variants
– Can we generalize? GiST!

• Next: hash-based indexes

11

Static hashing

What if a bucket is full?

key bucket
number

hash
function

h

bucket 0

bucket 1

bucket i

bucket
N-1

ki1
ki2
ki3
…

bucket i

h(k) = i

With records or
record pointers

bucket i
overflow

bucket i
overflow

…

12

Performance of static hashing 
• Depends on the quality of the hash function!

– Best (hopefully average) case: one I/O!
– Worst case: all keys hashed into one bucket!
– See Knuth vol. 3 for good hash functions

• Rule of thumb: keep utilization at 50%-80%
• How do we cope with growth?

– Extensible hashing
– Linear hashing



3

13

Extensible hashing (TODS 1979)

• Idea 1: use i bits of output by hash function and 
dynamically increase i as needed

• Problem: ++i = double the number of buckets!
• Idea 2: use a directory

– Just double the directory size
– Many directory entries can point to the same bucket
– Only split overflowed buckets
“One more level of indirection solves everything!”

i
0 1 1 0 1 0 1 1h(k)

14

Extensible hashing example (slide 1)

• Insert k with h(k) = 0101

0101

0
1

1000

1001
0011

1

1

1
Directory Buckets

• Bucket too full?
– ++local depth, split bucket, and ++global depth 

(double the directory size) if necessary
– Allowing some overflow is fine too

Local
depth

Global
depth

15

Extensible hashing example (slide 2)

• Insert 1110, 0000 

0
1

1000

1001
0101

1

2

1
Directory Buckets

00112

00
10
01
11

2
Directory

11100000

• Split again
– No directory doubling this time

16

Extensible hashing example (slide 3)

• Insert 0001

1110

1001
0101

2

2

Buckets

00112

00
10
01
11

2
Directory

1000
0000

2

0001

17

Extensible hashing example (slide 4)

1110

1001
0001

2

3

Buckets

00112

00
10
01
11

2
Directory

1000
0000

2

01013

000
100
010
110
001
101
011
111

3
Directory

Delete? Just the reverse:
– – local depth 
merge buckets
– – global depth if possible

18

Summary of extensible hashing
• Pros

– Handles growing files
– No full reorganization

• Cons
– One more level of indirection
– Directory size still doubles
– Sometimes doubling is not enough!

01001101
11001101

3
00001101 Directory size ×16

Buckets +4 (or +1 if the directory
can have null bucket pointers)



4

19

Linear hashing (VLDB 1980)

• Grow only when utilization exceeds a threshold
• No extra indirection

– Some extra math to figure out the right bucket

Insert 0101
Threshold exceeded; grow!

0000
1010

1111
0 1

i = 1 Number of bits in use = ceil(log2n)
n = 2 Number of primary buckets

0101

20

Linear hashing example (slide 2)

• Grows linearly (hence the name)
• Split the (n – 2floor(log2n))-th bucket (0-based index)

– Intuitively, the first one with the lowest depth
– Not necessarily the bucket being inserted into!

Insert 0001

0001

Insert 1100

1100

Threshold exceeded; grow!

0000 1111
0101

00 1
1010
10

i = 2
n = 3

21

Linear hashing example (slide 3)

0000
1100

0001
0101

00 01
1010
10

1111
11

i = 2
n = 4

Insert 1110
Threshold exceeded; grow!

1110

22

Linear hashing example (slide 4)

0000 0001
0101

000 01
1010
1110

10
1111
11

i = 3
n = 5

1100
100

• Look up 1110
– 110 (6-th bucket) is not here
– Then look in the (6 – 2floor(log2n))-th bucket (= 2nd)

23

Summary of Linear hashing
• Pros

– Handles growing files
– No full reorganization
– No extra level of indirection

• Cons
– Still has overflow chains
– May not be able to split an overflow chain right away 

because buckets must be split in sequence
empty empty empty full

full
full
full

empty empty empty

24

Hashing versus B-trees
• Hashing is faster on average, but the worst case is 

really bad
• B-trees provide performance guarantees, and they 

are not that tall in practice
• Hashing destroys order!
• B-trees provide order and support range queries


