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More indexing

CPS 216
Advanced Database Systems
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Outline

• Last time
– The basics
– ISAM
– B+-trees and variants

• R-tree and variants
• Hash indexes
• Next time: inverted list, GiST
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R-tree (SIGMOD 1984)

• B-tree: balanced hierarchy of 1-d ranges
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• R-tree: balanced hierarchy of N-d regions
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R-tree lookup

• Problem: search may go down many paths
– Because regions may overlap
– No performance guarantee like B-tree
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• Where am I?
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R-tree insertion (slide 1)

Insert R9 into R-tree
• Start from the root
• Pick a region containing R9 and follow the child pointer

– If none contains R9, pick one and grow it to contain R9

– Pick the one that requires the least enlargement
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R-tree insertion (slide 2)

• If a node is too full, split
– Try to minimize the total area of bounding boxes

• Quadratic: “seed” with the most wasteful pair; iteratively 
assign regions with strongest “preference”

• Linear: “seed” with distant regions; iteratively assign others
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R-tree insertion (slide 3)

• Split could propagate all the way up to the root 
(not shown in this example)
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R*-tree (SIGMOD 1990)

• R-tree
– Always tries to minimize the area of bounding boxes
– Quadratic splitting algorithm encourages small seeds 

and possibly long and narrow bounding boxes
• R*-tree

– Consider other criteria, e.g.
• Minimize overlap between bounding boxes
• Minimize the margin (perimeter length) of a bounding box

– Forced reinserts
• When a node overflows, reinsert “outer” entries
• They may be picked up by other nodes, thus saving a split
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R+-tree (VLDB 1987)

• Problem with R-tree
– Regions may overlap
– Search may go down many paths

• R+-tree
– Regions in non-leaf nodes do not overlap
– Search only goes down one path
– But an insertion must now go down many paths!

• R must be inserted into all R+-tree leaves whose bounding 
boxes overlap with R
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Review
• Tree-structured indexes

– ISAM
– B-tree and variants
– R-tree and variants
– Can we generalize? GiST!

• Next: hash-based indexes
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Static hashing

What if a bucket is full?

key bucket
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Performance of static hashing 
• Depends on the quality of the hash function!

– Best (hopefully average) case: one I/O!
– Worst case: all keys hashed into one bucket!
– See Knuth vol. 3 for good hash functions

• Rule of thumb: keep utilization at 50%-80%
• How do we cope with growth?

– Extensible hashing
– Linear hashing
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Extensible hashing (TODS 1979)

• Idea 1: use i bits of output by hash function and 
dynamically increase i as needed

• Problem: ++i = double the number of buckets!
• Idea 2: use a directory

– Just double the directory size
– Many directory entries can point to the same bucket
– Only split overflowed buckets
“One more level of indirection solves everything!”

i
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Extensible hashing example (slide 1)

• Insert k with h(k) = 0101
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• Bucket too full?
– ++local depth, split bucket, and ++global depth 

(double the directory size) if necessary
– Allowing some overflow is fine too

Local
depth

Global
depth
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Extensible hashing example (slide 2)

• Insert 1110, 0000 
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• Split again
– No directory doubling this time
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Extensible hashing example (slide 3)

• Insert 0001
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Extensible hashing example (slide 4)
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Delete? Just the reverse:
– – local depth 
merge buckets
– – global depth if possible
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Summary of extensible hashing
• Pros

– Handles growing files
– No full reorganization

• Cons
– One more level of indirection
– Directory size still doubles
– Sometimes doubling is not enough!

01001101
11001101

3
00001101 Directory size ×16

Buckets +4 (or +1 if the directory
can have null bucket pointers)
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Linear hashing (VLDB 1980)

• Grow only when utilization exceeds a threshold
• No extra indirection

– Some extra math to figure out the right bucket

Insert 0101
Threshold exceeded; grow!

0000
1010
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0 1

i = 1 Number of bits in use = ceil(log2n)
n = 2 Number of primary buckets

0101
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Linear hashing example (slide 2)

• Grows linearly (hence the name)
• Split the (n – 2floor(log2n))-th bucket (0-based index)

– Intuitively, the first one with the lowest depth
– Not necessarily the bucket being inserted into!

Insert 0001
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Threshold exceeded; grow!
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Linear hashing example (slide 3)
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Insert 1110
Threshold exceeded; grow!
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Linear hashing example (slide 4)
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• Look up 1110
– 110 (6-th bucket) is not here
– Then look in the (6 – 2floor(log2n))-th bucket (= 2nd)
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Summary of Linear hashing
• Pros

– Handles growing files
– No full reorganization
– No extra level of indirection

• Cons
– Still has overflow chains
– May not be able to split an overflow chain right away 

because buckets must be split in sequence
empty empty empty full

full
full
full

empty empty empty
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Hashing versus B-trees
• Hashing is faster on average, but the worst case is 

really bad
• B-trees provide performance guarantees, and they 

are not that tall in practice
• Hashing destroys order!
• B-trees provide order and support range queries


