
1

Query Processing

CPS 216
Advanced Database Systems

2

Overview
• Many different ways of implementing the same

logical query operator
– Scan, sort, hash, index
– All with different performance characteristics

• Best choice depends on the situation
– Implement all alternatives
– Let the query optimizer choose at run-time

3

Notation
• Relations: R, S
• Tuples: r, s
• Number of tuples: |R|, |S|
• Number of disk blocks: B(R), B(S)
• Number of memory blocks available: M
• Cost metric

– Number of I/O’s
– Memory requirement

4

Table scan
• Scan table R and process the query

– Selection over R
– Projection of R without duplicate elimination

• I/O’s: B(R)
– Trick for selection: stop early if it is a lookup by key

• Memory requirement: 2 (double buffering)
• Not counting the cost of writing the result out

– Same for any algorithm!
– Maybe not needed—results may be pipelined into

another operator

5

Nested-loop join
• R bap S
• For each block of R, and for each r in the block:

For each block of S, and for each s in the block:
Output rs if p evaluates to true over r and s

– R is called the outer table; S is called the inner table
• I/O’s: B(R) + |R| ⋅ B(S)
• Memory requirement: 3 (double buffering)

6

Tricks for nested-loop join
• Stop early

– If the key of the inner table is being matched
– May reduce half of the I/O’s

• Block-based nested-loop join
– Stuff memory with as much of R as possible, stream S

by, and join every S tuple with all R tuples in memory
– I/O’s: B(R) +  B(R) / (M – 2)  ⋅ B(S)

• Or, roughly: B(R) ⋅ B(S) / M
– Memory requirement: M (as much as possible)

2

7

External merge sort
• Pass 0: read M blocks of R at a time, sort them,

and write out a level-0 run
– There are  B(R) / M  level-0 sorted runs

• Pass i: merge (M – 1) level-(i-1) runs at a time,
and write out a level-i run
– (M – 1) memory blocks for input, 1 to buffer output
– # of level-i runs =  # of level-(i–1) runs / (M – 1) 

• Final pass produces 1 sorted run

8

Example of external merge sort
• Input: 1, 7, 4, 5, 2, 8, 3, 6, 9
• Pass 0

– 1, 7, 4 → 1, 4, 7
– 5, 2, 8 → 2, 5, 8
– 9, 6, 3 → 3, 6, 9

• Pass 1
– 1, 4, 7 + 2, 5, 8 → 1, 2, 4, 5, 7, 8
– 3, 6, 9

• Pass 2 (final)
– 1, 2, 4, 5, 7, 8 + 3, 6, 9 → 1, 2, 3, 4, 5, 6, 7, 8, 9

9

Performance of external merge sort
• Number of passes:  log M–1  B(R) / M   + 1
• I/O’s

– Multiply by 2 ⋅ B(R): each pass reads the entire
relation once and writes it once

– Subtract B(R) for the final pass
– Roughly, this is O(B(R) ⋅ log M B(R))

• Memory requirement: M (as much as possible)

10

Tricks for sorting
• Double buffering

– Allocate an additional block for each run
– Trade-off: smaller fan-in (more passes)

• Blocked I/O
– Instead of reading/writing one disk block at time, read/write a

bunch (“cluster”)
– More sequential I/O’s
– Trade-off: larger cluster ↔ smaller fan-in (more passes)

• Replacement sort
– On average produces level-0 runs that are twice as big
– Use a priority heap: keep outputting as much as possible and

making space for input

11

Sort-merge join
• R ��R.A = S.B S
• Sort R and S by their join attributes, and then merge

r, s = the first tuples in sorted R and S
Repeat until one of R and S is exhausted:

If r.A > s.B then s = next tuple in S
else if r.A < s.B then r = next tuple in R
else output all matching tuples, and

r, s = next in R and S
• I/O’s: sorting + B(R) + B(S)

– In most cases (e.g., join of key and foreign key)
– Worst case is B(R) ⋅ B(S): everything joins

12

Example
R: S: R baR.A = S.B S:
r1.A = 1 s1.B = 1
r2.A = 3 s2.B = 2
r3.A = 3 s3.B = 3
r4.A = 5 s4.B = 3
r5.A = 7 s5.B = 8
r6.A = 7
r7.A = 8

r1 s1
r2 s3
r2 s4
r3 s3
r3 s4
r7 s5

3

13

Optimization of SMJ
• Idea: combine join with the merge phase of merge sort
• Sort: produce sorted runs of size M for R and S
• Merge and join: merge the runs of R, merge the runs of

S, and merge the result streams as they are generated!

Merge

Merge

So
rte

d
ru

ns R

S

Disk Memory

Join

14

Performance of two-pass SMJ
• I/O’s: 3 ⋅ (B(R) + B(S))
• Memory requirement

– To be able to merge in one pass, we should have
enough memory to accommodate one block from each
run: M > B(R) / M + B(S) / M

– M > sqrt(B(R) + B(S))

15

Other sort-based algorithms
• Union, difference, intersection

– More or less like SMJ
• Duplication elimination

– External merge sort
• Eliminate duplicates in sort and merge

• GROUP BY and aggregation
– External merge sort

• Produce partial aggregate values in each run
• Combine partial aggregate values during merge
• Partial aggregate values don’t always work though

– Examples: SUM(DISTINCT …), MEDIAN(…)
16

Hash join
• R baR.A = S.B S
• Main idea

– Partition R and S by hashing their join attributes, and
then consider corresponding partitions of R and S

– If r.A and s.B get hashed to different partitions, they
don’t join R

S

Nested-loop join considers
all slots
Hash join considers
only those along the diagonal

17

Partitioning phase
• Partition R and S according to the same hash

function on their join attributes

M – 1 partitions of R

DiskMemory

R

Same for S

… …

18

Probing phase
• Read in each partition of R, stream in the

corresponding partition of S, join
– Typically build a hash table for the partition of R

• Not the same hash function used for partition, of course!

Disk Memory

R
partitions

S
partitions

…
…

…load

stream For each S tuple,
probe and join

4

19

Performance of hash join
• I/O’s: 3 ⋅ (B(R) + B(S))
• Memory requirement:

– In the probing phase, we should have enough memory
to fit one partition of R: M – 1 ≥ B(R) / (M – 1)

– M > sqrt(B(R))
– We can always pick R to be the smaller relation, so:

M > sqrt(min(B(R), B(S))

20

Hash join tricks
• What if a partition is too large for memory?

– Read it back in and partition it again!
• See the duality in multi-pass merge sort here?

21

Hybrid hash join
• What if there is extra memory available?

– Use it to avoid writing/re-reading partitions
• Of both R and S!

DiskMemory

R

… …

A generalization of the idea is described
in the survey paper by Graefe 22

Hash join versus SMJ
(Assuming two-pass)
• I/O’s: same
• Memory requirement: hash join is lower

– sqrt(min(B(R), B(S)) < sqrt(B(R) + B(S))
– Hash join wins when two relations have very different sizes

• Other factors
– Hash join performance depends on the quality of the hash

• Might not get evenly sized buckets

– SMJ can be adapted for inequality join predicates
– SMJ wins if R and/or S are already sorted
– SMJ wins if the result needs to be in sorted order

23

What about nested-loop join?

• May be best if many tuples join
– Example: non-equality joins that are not very selective

• Necessary for black-box predicates
– Example: … WHERE user_defined_pred(R.A, S.B)

24

Other hash-based algorithms
• Union, difference, intersection

– More or less like hash join
• Duplicate elimination

– Check for duplicates within each partition/bucket
• GROUP BY and aggregation

– Apply the hash functions to GROUP-BY attributes
– Tuples in the same group must end up in the same

partition/bucket
– Keep a running aggregate value for each group

5

25

Duality of sort and hash
• Divide-and-conquer paradigm

– Sorting: physical division, logical combination
– Hashing: logical division, physical combination

• Handling very large inputs
– Sorting: multi-level merge
– Hashing: recursive partitioning

• I/O patterns
– Sorting: sequential write, random read (merge)
– Hashing: random write, sequential read (partition)

