
1

Query Processing
(And Even More Indexing!)

CPS 216
Advanced Database Systems

2

Review
• Many different ways of implementing the same

logical query operator
– Scan

• Nested-loop join
– Sort

• External merge sort
• Sort-merge join

– Hash
• Hash join

» Index (today)

3

Selection using index
• Equality predicate: σA = v (R)

– Use an ISAM, B+-tree, or hash index on R(A)
• Range predicate: σA > v (R)

– Use an ordered index (e.g., ISAM or B+-tree) on R(A)
– Hash index is not applicable

• Indexes other than those on R(A) may be useful
– Example: B+-tree index on R(A, B)

2

4

Index versus table scan (slide 1)

Situations where index clearly wins:
• Index-only queries which do not require

retrieving actual tuples
– Example: πA (σA > v (R))

• Primary index clustered according to search key
– One lookup leads to all result tuples in their entirety

5

Index versus table scan (slide 2)

BUT(!):
• Consider σA > v (R) and a secondary, non-clustered

index on R(A)
– Need to follow pointers to get the actual result tuples
– Say that 20% of R satisfies A > v

• Could happen even for equality predicates
– I/O’s for index-based selection: lookup + 20% |R|
– I/O’s for scan-based selection: B(R)
– Table scan wins if a block contains more than 5 tuples

6

Sorting using an ordered index
Use an index on the sort key
• Go through the index and output tuples in order
• Very efficient for a primary index clustered

according to sort key
• Terrible for a secondary, non-clustered index

– I/O’s: |R|
– I/O’s required by two-pass external merge sort: 3·B(R)
– Yes, it makes sense to sort even though the index

already does it!

3

7

Index nested-loop join
• R ��R.A = S.B S
• Idea: use the value of R.A to probe the index on S(B)
• For each block of R, and for each r in the block:

Use the index on S(B) to retrieve s with s.B = r.A
Output rs

• I/O’s: B(R) + |R| · (index lookup)
– Typically, the cost of an index lookup is 2-4 I/O’s
– Beats other join methods if |R| isn’t too big
– Better pick R to be the smaller relation

• Memory requirement: 2

8

Tricks for index nested-loop join
Goal: reduce |R| · (index lookup)
• For tree-based indexes, keep the upper part of the

tree in memory
• For extensible hash index, keep the directory in

memory
• Sorting or partitioning R according to the join

attribute

9

Zig-zag join using ordered indexes
• R ��R.A = S.B S
• Idea: use the ordering provided by the indexes on R(A)

and S(B) to eliminate the sorting step of sort-merge join
• Trick: use the larger key to probe the other index

– Possibly skipping many keys that don’t match

B+-tree on R(A)

B+-tree on S(B)

1 2 3 4 7 9 18

1 7 9 11 12 17 19

4

10

More indexes ahead!

• Bitmap index
– Generalized value-list index

• Projection index

• Bit-sliced index

11

Search key values × tuples

• Looks familiar?

1 1 0 … 0
0 0 0 … 0
0 0 1 … 1
0 0 0 … 0
0 0 0 … 0
… … … … …

Tuples

8

10
9

26
108

Search key values

1 means tuple has the particular search key value
0 means otherwise

0 1 2 n – 1

12

Bitmap index
• Value-list index—stores the matrix by rows

– Traditionally list contains pointers to tuples
– B+-tree: tuples with same search key values
– Inverted list: documents with same keywords

• If there are not many search key values, and there
are lots of 1’s in each row, pointer list is not
space-efficient
– How about a bitmap?
– Still a B+-tree, except leaves have a different format

5

13

Technicalities
• How do we go from a bitmap index (0 to n – 1) to

the actual tuple?
» One more level of indirection solves everything
» Or, given a bitmap index, directly calculate the

physical block number and the slot number
within the block for the tuple

• In either case, certain block/slot may be invalid
– Because of deletion, or variable-length tuples
– Keep an existence bitmap: bit set to 1 if tuple exists

14

Bitmap versus traditional value-list
• Operations on bitmaps are faster than pointer lists

– Bitmap AND: bit-wise AND
– Value-list AND: sort-merge join

• Bitmap is more efficient when the matrix is
sufficiently dense; otherwise, pointer list is more
efficient
– Smaller means more in memory and fewer I/O’s

• Really the same idea of storing rows in the matrix
– Generalized value-list index: with both bitmap and

pointer list as alternatives

15

Projection index
• Just store πA (R) and use it as an index!

TID A B …
0 8 … …
1 8 … …
2 26 … …
3 108 … …
… … … …

n - 1 10 … …

Could be implicit
and not explicitly stored

TID A B …
0 8 … …
1 8 … …
2 26 … …
3 108 … …
… … … …

n - 1 10 … …

Projection index

6

16

Why projection index?
• Idea: still a table scan, but we are scanning a

much smaller table (project index)
– Savings could be substantial for long tuples with lots

of attributes
• Looks familiar?

17

Bit-sliced index
• If a column stores binary numbers, then slice

their bits vertically
– Basically a projection index by slices

Projection index

TID A
0 0 0 0 0 1 0 0 0
1 0 0 0 0 1 0 0 0
2 0 0 0 1 1 0 1 0
3 0 1 1 0 1 1 0 0
… …

n - 1 0 0 0 0 1 0 1 0

Bit-sliced index

Slice 0Slice 7 …

18

Aggregate query processing example
SELECT SUM(dollar_sales)
FROM Sales
WHERE condition;

• Already found Bf (a bitmap or a sorted list of
TID’s that point to Sales tuples that satisfy
condition)
– Probably used a secondary index

• Now, need to compute SUM(dollar_sales) for
tuples in Bf

7

19

SUM without any index

• For each tuple in Bf, go fetch the actual tuple, and
add dollar_sales to a running sum

• I/O’s: number of Sales blocks with Bf tuples
– Assuming we fetch them in sorted order

20

SUM with a value-list index
• Assume a value-list index on Sales(dollar_sales)
• Idea: the index contains dollar_sales values and their

counts
• sum = 0;

Scan index—for each indexed value v with value-list Bv:
sum += v × count-1-bits(Bv AND Bf);

• I/Os: number of blocks taken by the value-list index
• Bitmaps can possibly speed up AND and reduce the size

of the index

21

SUM with a projection index
• Assume a project index on Sales(dollar_sales)
• Idea: merge join Bf and the projection index, add joining

tuples’ dollar_sales to a running sum
– Assuming both Bf and the index are sorted on TID

• I/O’s: number of blocks taken by the projection index
– Compared with a value-list index, the projection index is more

compact (no empty space or pointers), but it does store
duplicate dollar_sales values

• Also: simpler algorithm, fewer CPU operations

8

22

SUM with a bit-sliced index
• Assume a bit-sliced index on Sales(dollar_sales), with

slices B1, B2, …, Bk – 1

• sum = 0;
for i = 0 to k – 1:

sum += 2i × count-1-bits(Bi AND Bf);
• I/O’s: number of blocks taken by the bit-sliced index
• Conceptually a bit-sliced index contains the same

information as a projection index
– But the bit-sliced index doesn’t keep TID!
– Bitmap AND is faster

23

Summary of SUM
• Best: bit-sliced index

– Index is small
– Bf can be applied fast!

• Good: projection index
• Not bad: value-list index

– Full-fledged index carries a bigger overhead
• The fact that we have counts of values helped
• But we didn’t really need values to be ordered

24

MEDIAN
SELECT MEDIAN(dollar_sales)
FROM Sales
WHERE condition;

• Same deal: already found Bf (a bitmap or a sorted
list of TID’s that point to Sales tuples that satisfy
condition)

• Now, need to find the dollar_sales value that is
greater than or equal to ½ × count-1-bits(Bf)
dollar_sales values among Bf tuples

9

25

MEDIAN with an ordered value-list index

• Idea: take advantage of the fact that the index is
ordered by dollar_sales

• Scan the index in order, count the number of
tuples that appeared in Bf until the count reaches
½ × count-1-bits(Bf)

• I/O’s: roughly half of the index

26

MEDIAN with a projection index

• In general, need to sort the index by dollar_sales
– Well, when you sort, you more or less get back an

ordered value-list index!

• Not useful unless Bf is small

27

MEDIAN with a bit-sliced index
• Tough at the first glance—index is not sorted
• Think of it as sorted!

– We won’t actually take advantage of the this fact

0 0 0…
0 0 1…
1 0 0…
1 1 0…
1 1 1…

More than half are 0’s?
Look at Bk – 1 first

Yes; continue searching
for median here

No; continue searching
for median here

10

28

MEDIAN Using a bit-sliced index
• median = 0;
Bcurrent = Bf; // which tuples we are considering
sofar = 0; // number of values that are less

// than what we are considering
for i = k – 1 to 0:

if (sofar + count-1-bits(Bcurrent AND NOT(Bi))
≤ ½ × count-1-bits(Bf)):

Bcurrent = Bcurrent AND Bi;
sofar += count-1-bits(Bcurrent AND NOT(Bi);
median += 2i;

else:
Bcurrent = Bcurrent AND NOT(Bi);

• I/O’s: still need to scan the entire index

Is the median not with the 0’s?

Median is with the 1’s

Median is with the 0’s

All 0’s are
less than these

29

Summary of MEDIAN

• Best: ordered value-list index
– It helps to be ordered!

• Pretty good: bit-sliced index
– Could beat ordered value-list index if Bf is “clustered”

• Only need to retrieve the corresponding segment

30

More variant indexes

• O’Neil and Quass, “Improved Query
Performance with Variant Indexes,” SIGMOD 97
– MIN/MAX
– And fun with range query using bit-sliced index!

