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Query Processing
(And Even More Indexing!)

CPS 216
Advanced Database Systems
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Review
• Many different ways of implementing the same 

logical query operator
– Scan

• Nested-loop join
– Sort

• External merge sort
• Sort-merge join

– Hash
• Hash join

» Index (today)
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Selection using index
• Equality predicate: σA = v (R)

– Use an ISAM, B+-tree, or hash index on R(A)
• Range predicate: σA > v (R)

– Use an ordered index (e.g., ISAM or B+-tree) on R(A)
– Hash index is not applicable

• Indexes other than those on R(A) may be useful
– Example: B+-tree index on R(A, B)
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Index versus table scan (slide 1)

Situations where index clearly wins:
• Index-only queries which do not require 

retrieving actual tuples
– Example: πA (σA > v (R))

• Primary index clustered according to search key
– One lookup leads to all result tuples in their entirety
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Index versus table scan (slide 2)

BUT(!):
• Consider σA > v (R) and a secondary, non-clustered 

index on R(A)
– Need to follow pointers to get the actual result tuples
– Say that 20% of R satisfies A > v

• Could happen even for equality predicates
– I/O’s for index-based selection: lookup + 20% |R|
– I/O’s for scan-based selection: B(R)
– Table scan wins if a block contains more than 5 tuples
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Sorting using an ordered index
Use an index on the sort key
• Go through the index and output tuples in order
• Very efficient for a primary index clustered 

according to sort key
• Terrible for a secondary, non-clustered index

– I/O’s: |R|
– I/O’s required by two-pass external merge sort: 3·B(R)
– Yes, it makes sense to sort even though the index 

already does it!
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Index nested-loop join
• R ��R.A = S.B S
• Idea: use the value of R.A to probe the index on S(B)
• For each block of R, and for each r in the block:

Use the index on S(B) to retrieve s with s.B = r.A
Output rs

• I/O’s: B(R) + |R| · (index lookup)
– Typically, the cost of an index lookup is 2-4 I/O’s
– Beats other join methods if |R| isn’t too big
– Better pick R to be the smaller relation

• Memory requirement: 2
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Tricks for index nested-loop join
Goal: reduce |R| · (index lookup)
• For tree-based indexes, keep the upper part of the 

tree in memory
• For extensible hash index, keep the directory in 

memory
• Sorting or partitioning R according to the join 

attribute
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Zig-zag join using ordered indexes
• R ��R.A = S.B S
• Idea: use the ordering provided by the indexes on R(A) 

and S(B) to eliminate the sorting step of sort-merge join
• Trick: use the larger key to probe the other index

– Possibly skipping many keys that don’t match

B+-tree on R(A)

B+-tree on S(B)

1 2 3 4 7 9 18

1 7 9 11 12 17 19
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More indexes ahead!

• Bitmap index
– Generalized value-list index

• Projection index

• Bit-sliced index
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Search key values × tuples

• Looks familiar?

1 1 0 … 0
0 0 0 … 0
0 0 1 … 1
0 0 0 … 0
0 0 0 … 0
… … … … …

Tuples

8

10
9

26
108

Search key values

1 means tuple has the particular search key value
0 means otherwise

0 1 2 n – 1
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Bitmap index
• Value-list index—stores the matrix by rows

– Traditionally list contains pointers to tuples
– B+-tree: tuples with same search key values
– Inverted list: documents with same keywords

• If there are not many search key values, and there 
are lots of 1’s in each row, pointer list is not 
space-efficient
– How about a bitmap?
– Still a B+-tree, except leaves have a different format
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Technicalities
• How do we go from a bitmap index (0 to n – 1) to 

the actual tuple?
» One more level of indirection solves everything
» Or, given a bitmap index, directly calculate the 

physical block number and the slot number 
within the block for the tuple

• In either case, certain block/slot may be invalid
– Because of deletion, or variable-length tuples
– Keep an existence bitmap: bit set to 1 if tuple exists
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Bitmap versus traditional value-list
• Operations on bitmaps are faster than pointer lists 

– Bitmap AND: bit-wise AND
– Value-list AND: sort-merge join

• Bitmap is more efficient when the matrix is 
sufficiently dense; otherwise, pointer list is more 
efficient
– Smaller means more in memory and fewer I/O’s

• Really the same idea of storing rows in the matrix
– Generalized value-list index: with both bitmap and 

pointer list as alternatives

15

Projection index
• Just store πA (R) and use it as an index!

TID A B …
0 8 … …
1 8 … …
2 26 … …
3 108 … …
… … … …

n  - 1 10 … …

Could be implicit
and not explicitly stored

TID A B …
0 8 … …
1 8 … …
2 26 … …
3 108 … …
… … … …

n  - 1 10 … …

Projection index
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Why projection index?
• Idea: still a table scan, but we are scanning a 

much smaller table (project index)
– Savings could be substantial for long tuples with lots 

of attributes
• Looks familiar?
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Bit-sliced index
• If a column stores binary numbers, then slice 

their bits vertically
– Basically a projection index by slices

Projection index

TID A
0 0 0 0 0 1 0 0 0
1 0 0 0 0 1 0 0 0
2 0 0 0 1 1 0 1 0
3 0 1 1 0 1 1 0 0
… …

n  - 1 0 0 0 0 1 0 1 0

Bit-sliced index

Slice 0Slice 7 …
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Aggregate query processing example
SELECT SUM(dollar_sales)
FROM Sales
WHERE condition;

• Already found Bf (a bitmap or a sorted list of 
TID’s that point to Sales tuples that satisfy 
condition)
– Probably used a secondary index

• Now, need to compute SUM(dollar_sales) for 
tuples in Bf
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SUM without any index

• For each tuple in Bf, go fetch the actual tuple, and 
add dollar_sales to a running sum

• I/O’s: number of Sales blocks with Bf tuples
– Assuming we fetch them in sorted order
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SUM with a value-list index
• Assume a value-list index on Sales(dollar_sales) 
• Idea: the index contains dollar_sales values and their 

counts
• sum = 0;

Scan index—for each indexed value v with value-list Bv:
sum += v × count-1-bits(Bv AND Bf);

• I/Os: number of blocks taken by the value-list index
• Bitmaps can possibly speed up AND and reduce the size 

of the index
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SUM with a projection index
• Assume a project index on Sales(dollar_sales)
• Idea: merge join Bf and the projection index, add joining 

tuples’ dollar_sales to a running sum
– Assuming both Bf and the index are sorted on TID

• I/O’s: number of blocks taken by the projection index
– Compared with a value-list index, the projection index is more 

compact (no empty space or pointers), but it does store 
duplicate dollar_sales values

• Also: simpler algorithm, fewer CPU operations
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SUM with a bit-sliced index
• Assume a bit-sliced index on Sales(dollar_sales), with 

slices B1, B2, …, Bk – 1

• sum = 0;
for i = 0 to k – 1:

sum += 2i × count-1-bits(Bi AND Bf);
• I/O’s: number of blocks taken by the bit-sliced index
• Conceptually a bit-sliced index contains the same 

information as a projection index
– But the bit-sliced index doesn’t keep TID!
– Bitmap AND is faster
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Summary of SUM
• Best: bit-sliced index

– Index is small
– Bf can be applied fast!

• Good: projection index
• Not bad: value-list index

– Full-fledged index carries a bigger overhead 
• The fact that we have counts of values helped
• But we didn’t really need values to be ordered
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MEDIAN
SELECT MEDIAN(dollar_sales)
FROM Sales
WHERE condition;

• Same deal: already found Bf (a bitmap or a sorted 
list of TID’s that point to Sales tuples that satisfy 
condition)

• Now, need to find the dollar_sales value that is 
greater than or equal to ½ × count-1-bits(Bf ) 
dollar_sales values among Bf tuples
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MEDIAN with an ordered value-list index

• Idea: take advantage of the fact that the index is 
ordered by dollar_sales

• Scan the index in order, count the number of 
tuples that appeared in Bf until the count reaches 
½ × count-1-bits(Bf )

• I/O’s: roughly half of the index
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MEDIAN with a projection index

• In general, need to sort the index by dollar_sales
– Well, when you sort, you more or less get back an 

ordered value-list index!

• Not useful unless Bf is small
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MEDIAN with a bit-sliced index
• Tough at the first glance—index is not sorted
• Think of it as sorted!

– We won’t actually take advantage of the this fact

0  0  0…
0  0  1…
1  0  0…
1  1  0…
1  1  1…

More than half are 0’s?
Look at Bk – 1 first

Yes; continue searching
for median here

No; continue searching
for median here
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MEDIAN Using a bit-sliced index
• median = 0;
Bcurrent = Bf; // which tuples we are considering
sofar = 0; // number of values that are less

// than what we are considering
for i = k – 1 to 0:

if (sofar + count-1-bits(Bcurrent AND NOT(Bi ))
≤ ½ × count-1-bits(Bf )):

Bcurrent = Bcurrent AND Bi;
sofar += count-1-bits(Bcurrent AND NOT(Bi);
median += 2i;

else:
Bcurrent = Bcurrent AND NOT(Bi);

• I/O’s: still need to scan the entire index

Is the median not with the 0’s?

Median is with the 1’s

Median is with the 0’s

All 0’s are
less than these
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Summary of MEDIAN 

• Best: ordered value-list index
– It helps to be ordered!

• Pretty good: bit-sliced index
– Could beat ordered value-list index if Bf is “clustered” 

• Only need to retrieve the corresponding segment
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More variant indexes

• O’Neil and Quass, “Improved Query 
Performance with Variant Indexes,” SIGMOD 97
– MIN/MAX
– And fun with range query using bit-sliced index!


