
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Selection using index

\qquad

- Equality predicate: $\sigma_{A=v}(R)$ \qquad
- Use an ISAM, B^{+}-tree, or hash index on $R(A)$
- Range predicate: $\sigma_{A>v}(R)$
- Use an ordered index (e.g., ISAM or B^{+}-tree) on $R(A)$
- Hash index is not applicable
- Indexes other than those on $R(A)$ may be useful - Example: B^{+}-tree index on $R(A, B)$
\qquad
\qquad
\qquad
\qquad

Index versus table scan (slide 1)

Situations where index clearly wins:

- Index-only queries which do not require retrieving actual tuples
- Example: $\pi_{A}\left(\sigma_{A>v}(R)\right)$
- Primary index clustered according to search key
- One lookup leads to all result tuples in their entirety

Index versus table scan (slide 2)

BUT(!):

- Consider $\sigma_{A>v}(R)$ and a secondary, non-clustered index on $R(A)$
- Need to follow pointers to get the actual result tuples
- Say that 20% of R satisfies $A>v$
- Could happen even for equality predicates
- I/O's for index-based selection: lookup $+20 \%|R|$
- I/O's for scan-based selection: $B(R)$
- Table scan wins if a block contains more than 5 tuples

Sorting using an ordered index

Use an index on the sort key

- Go through the index and output tuples in order
- Very efficient for a primary index clustered according to sort key
- Terrible for a secondary, non-clustered index
- I/O's: $|R|$
- I/O's required by two-pass external merge sort: $3 \cdot B(R)$
- Yes, it makes sense to sort even though the index already does it! 5
\qquad

Index nested-loop join

- $R \triangleright \triangleleft_{R . A=S . B} S$
- Idea: use the value of $R . A$ to probe the index on $S(B)$
- For each block of R, and for each r in the block:

Use the index on $S(B)$ to retrieve s with $s . B=r . A$ Output $r s$

- I/O's: $B(R)+|R| \cdot($ index lookup)
- Typically, the cost of an index lookup is 2-4 I/O's
- Beats other join methods if $|R|$ isn't too big
- Better pick R to be the smaller relation
- Memory requirement: 2

Tricks for index nested-loop join

Goal: reduce $|R| \cdot$ (index lookup)

- For tree-based indexes, keep the upper part of the tree in memory
- For extensible hash index, keep the directory in memory
- Sorting or partitioning R according to the join attribute

Zig-zag join using ordered indexes

- $R \triangleright \triangleleft_{R . A=S . B} S$
- Idea: use the ordering provided by the indexes on $R(A)$ and $S(B)$ to eliminate the sorting step of sort-merge join
- Trick: use the larger key to probe the other index
- Possibly skipping many keys that don't match

More indexes ahead!

- Bitmap index
- Generalized value-list index
\qquad
- Projection index
- Bit-sliced index \qquad
\qquad

Search key values \times tuples

Tuples					
Search key values	0	1	2		$n-1$
8	1	1	0	...	0
9	0	0	0	\ldots	0
10	0	0	1		1
26	0	0	0	\ldots	0
108	0	0	0	...	0
	1 means tuple has the particular search key value 0 means otherwise				

- Looks familiar?

Bitmap index

- Value-list index-stores the matrix by rows
- Traditionally list contains pointers to tuples
- B^{+}-tree: tuples with same search key values
- Inverted list: documents with same keywords
- If there are not many search key values, and there are lots of 1 's in each row, pointer list is not space-efficient
- How about a bitmap?
- Still a B ${ }^{+}$-tree, except leaves have a different format
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad 12

Technicalities

- How do we go from a bitmap index (0 to $n-1$) to the actual tuple?
» One more level of indirection solves everything
» Or, given a bitmap index, directly calculate the physical block number and the slot number within the block for the tuple
- In either case, certain block/slot may be invalid
- Because of deletion, or variable-length tuples
- Keep an existence bitmap: bit set to 1 if tuple exists

Bitmap versus traditional value-list

- Operations on bitmaps are faster than pointer lists
- Bitmap AND: bit-wise AND
- Value-list AND: sort-merge join
- Bitmap is more efficient when the matrix is sufficiently dense; otherwise, pointer list is more efficient
- Smaller means more in memory and fewer I/O's
- Really the same idea of storing rows in the matrix
- Generalized value-list index: with both bitmap and pointer list as alternatives

Projection index

- Just store $\pi_{A}(R)$ and use it as an index! \qquad
\qquad
\qquad
\qquad
\qquad

Why projection index?

- Idea: still a table scan, but we are scanning a \qquad much smaller table (project index)
- Savings could be substantial for long tuples with lots of attributes
- Looks familiar? \qquad
\qquad
\qquad

Bit-sliced index

- If a column stores binary numbers, then slice \qquad their bits vertically
- Basically a projection index by slices \qquad

\qquad
\qquad
\qquad
17

Aggregate query processing example

\qquad
SELECT SUM(dollar_sales)
FROM Sales
WHERE condition;
\qquad

- Already found B_{f} (a bitmap or a sorted list of TID's that point to Sales tuples that satisfy
\qquad condition)
- Probably used a secondary index \qquad
- Now, need to compute SUM(dollar_sales) for tuples in B_{f}

SUM without any index

- For each tuple in B_{f}, go fetch the actual tuple, and add dollar_sales to a running sum
- I/O's: number of Sales blocks with B_{f} tuples
- Assuming we fetch them in sorted order

SUM with a value-list index

- Assume a value-list index on Sales(dollar_sales)
- Idea: the index contains dollar_sales values and their counts
- sum = 0;

Scan index-for each indexed value v with value-list B_{v} : sum $+=v \times \operatorname{count-1}-\operatorname{bits}\left(B_{v}\right.$ AND $\left.B_{f}\right)$;

- I/Os: number of blocks taken by the value-list index
- Bitmaps can possibly speed up AND and reduce the size of the index

SUM with a projection index

\qquad

- Assume a project index on Sales(dollar_sales)
- Idea: merge join B_{f} and the projection index, add joining tuples' dollar_sales to a running sum
- Assuming both B_{f} and the index are sorted on TID
- I/O's: number of blocks taken by the projection index
- Compared with a value-list index, the projection index is more compact (no empty space or pointers), but it does store duplicate dollar_sales values
- Also: simpler algorithm, fewer CPU operations \qquad 21

SUM with a bit-sliced index

- Assume a bit-sliced index on Sales(dollar_sales), with \qquad slices $B_{1}, B_{2}, \ldots, B_{k-1}$
- $\operatorname{sum}=0$;
for $i=0$ to $k-1$:
sum $+=2^{i} \times$ count-1-bits $\left(B_{i}\right.$ AND $\left.B_{f}\right)$;
- I/O's: number of blocks taken by the bit-sliced index
- Conceptually a bit-sliced index contains the same information as a projection index
- But the bit-sliced index doesn't keep TID!
- Bitmap AND is faster

Summary of SUM

\qquad

- Best: bit-sliced index
- Index is small
- B_{f} can be applied fast!
- Good: projection index
- Not bad: value-list index
- Full-fledged index carries a bigger overhead
- The fact that we have counts of values helped
- But we didn't really need values to be ordered

MEDIAN

\qquad
SELECT MEDIAN(dollar_sales)
FROM Sales
WHERE condition;

- Same deal: already found B_{f} (a bitmap or a sorted list of TID's that point to Sales tuples that satisfy \qquad condition)
- Now, need to find the dollar_sales value that is \qquad greater than or equal to $1 / 2 \times$ count-1-bits $\left(B_{f}\right)$ dollar_sales values among B_{f} tuples

MEDIAN with an ordered value-list index

- Idea: take advantage of the fact that the index is ordered by dollar_sales
- Scan the index in order, count the number of
\qquad tuples that appeared in B_{f} until the count reaches $1 / 2 \times$ count-1-bits $\left(B_{f}\right)$
- I/O's: roughly half of the index
\qquad
\qquad
\qquad
\qquad
\qquad

MEDIAN with a projection index

\qquad

- In general, need to sort the index by dollar_sales
- Well, when you sort, you more or less get back an ordered value-list index!
- Not useful unless B_{f} is small
\qquad
\qquad
\qquad
\qquad
\qquad

MEDIAN with a bit-sliced index

\qquad

- Tough at the first glance-index is not sorted \qquad
- Think of it as sorted!
- We won't actually take advantage of the this fact \qquad

MEDIAN Using a bit-sliced index

- median $=0$;
$B_{\text {current }}=B_{f} ; \quad / /$ which tuples we are considering sofar $=0 ; \quad / /$ number of values that are less // than what we are considering
for $i=k-1$ to 0 : \quad Is the median not with the 0 's? if $\left(\right.$ sofar + count-1-bits $\left(B_{\text {current }}\right.$ AND NOT $\left.\left(B_{i}\right)\right)$, $\leq 1 / 2 \times$ count-1-bits $\left(B_{f}\right)$)
$B_{\text {current }}=B_{\text {current }}$ AND B_{i}; Median is with the 1's
All 0 's are $\stackrel{B_{\text {current }}}{\text { curn }}$ cofar $+=$ count-1-bits $\left(B_{\text {current }} \operatorname{AND~NOT(~} B_{i}\right)$; median $+=2^{i}$;
else:
$B_{\text {current }}=B_{\text {current }} \operatorname{AND~NOT}\left(B_{i}\right) ;$ Median is with the 0 's
- I/O's: still need to scan the entire index

Summary of MEDIAN

- Best: ordered value-list index
- It helps to be ordered!
- Pretty good: bit-sliced index
- Could beat ordered value-list index if B_{f} is "clustered"
- Only need to retrieve the corresponding segment

More variant indexes

- O’Neil and Quass, "Improved Query

Performance with Variant Indexes," SIGMOD 97

- MIN/MAX
- And fun with range query using bit-sliced index!

