Query Processing
(And Even More Indexing!)

CPS 216
Advanced Database Systems

Review

* Many different ways of implementing the same
logical query operator
— Scan
« Nested-loop join
— Sort
< External merge sort
* Sort-merge join
— Hash
 Hash join
» Index (today)

Selection using index

* Equality predicate: g, _, (R)
— Use an ISAM, B*-tree, or hash index on R(4)

» Range predicate: g, . , (R)
— Use an ordered index (e.g., ISAM or B-tree) on R(A)
— Hash index is not applicable

* Indexes other than those on R(4) may be useful
— Example: B*-tree index on R(4, B)

Index versus table scan iide 1)

Situations where index clearly wins:

* Index-only queries which do not require
retrieving actual tuples
— Example: 7, (6,4, (R))

* Primary index clustered according to search key
— One lookup leads to all result tuples in their entirety

Index versus table scan iide 2)

BUT(!):
* Consider g, , (R) and a secondary, non-clustered
index on R(4)
— Need to follow pointers to get the actual result tuples
— Say that 20% of R satisfies 4 > v
« Could happen even for equality predicates
— 1/O’s for index-based selection: lookup + 20% |R|
— I/O’s for scan-based selection: B(R)
— Table scan wins if a block contains more than 5 tuples

5

Sorting using an ordered index

Use an index on the sort key

* Go through the index and output tuples in order

* Very efficient for a primary index clustered
according to sort key

* Terrible for a secondary, non-clustered index
- 1/O’s: |R|
— I/O’s required by two-pass external merge sort: 3-B(R)

— Yes, it makes sense to sort even though the index
already does it!




Index nested-loop join

* Ro<p, -89S
¢ Idea: use the value of R.4 to probe the index on S(B)
* For each block of R, and for each r in the block:
Use the index on S(B) to retrieve s with s.B = r.4
Output rs

* 1/O’s: B(R) + |R| - (index lookup)

— Typically, the cost of an index lookup is 2-4 I/O’s

— Beats other join methods if |R| isn’t too big

— Better pick R to be the smaller relation

* Memory requirement: 2

Tricks for index nested-loop join

Goal: reduce |R| - (index lookup)

* For tree-based indexes, keep the upper part of the
tree in memory

* For extensible hash index, keep the directory in
memory

* Sorting or partitioning R according to the join
attribute

— Improves locality: subsequent lookup may follow the
same path or go to the same bucket

Zig-zag join using ordered indexes

* Rp<p =558

* Idea: use the ordering provided by the indexes on R(A4)
and S(B) to eliminate the sorting step of sort-merge join

 Trick: use the larger key to probe the other index
— Possibly skipping many keys that don’t match

B-tree on R(A)

= =2 3 4 7 9 8
D =7 9 1 12 1719

B-tree on S(B)

More indexes ahead!

* Bitmap index
— Generalized value-list index

* Projection index

 Bit-sliced index

Search key values x tuples

Tuples

Search key values 2 n

8

9
10
26
108

Dlolole|o|r| e
i lolelelo|k| —
olo|r|ole
tlole|rlelo]| !

1 means tuple has the particular search key value
0 means otherwise

¢ Looks familiar?

— Keywords x documents

Bitmap index

* Value-list index—stores the matrix by rows
— Traditionally list contains pointers to tuples
— B*-tree: tuples with same search key values
— Inverted list: documents with same keywords
* If there are not many search key values, and there
are lots of 1’s in each row, pointer list is not
space-efficient
— How about a bitmap?
— Still a B*-tree, except leaves have a different format

12




Technicalities

* How do we go from a bitmap index (0 to n — 1) to
the actual tuple?

» One more level of indirection solves everything

» Or, given a bitmap index, directly calculate the
physical block number and the slot number
within the block for the tuple

« In either case, certain block/slot may be invalid
— Because of deletion, or variable-length tuples

— Keep an existence bitmap: bit set to 1 if tuple exists
13

Bitmap versus traditional value-list

* Operations on bitmaps are faster than pointer lists
— Bitmap AND: bit-wise AND
— Value-list AND: sort-merge join
* Bitmap is more efficient when the matrix is
sufficiently dense; otherwise, pointer list is more
efficient
— Smaller means more in memory and fewer I/O’s
 Really the same idea of storing rows in the matrix

— Generalized value-list index: with both bitmap and
pointer list as alternatives
14

Projection index

* Just store 7, (R) and use it as an index!

Could be implicit [y
and not explicitly stored

o

B

N
[ [ >

108

Dw Nk o

n-1f 10

Projection index

Why projection index?

* Idea: still a table scan, but we are scanning a
much smaller table (project index)

— Savings could be substantial for long tuples with lots
of attributes

* Looks familiar?
- DSM!
— Except that we keep the original table

Bit-sliced index

* If a column stores binary numbers, then slice
their bits vertically
— Basically a projection index by slices

Projection index

TID A

0]0]
0]0]
0]1
10}

lwNe o

Bit-sliced index

Aggregate query processing example

SELECT SUM(dollar_sales)
FROM Sales
WHERE condition;

* Already found B, (a bitmap or a sorted list of
TID’s that point to Sales tuples that satisfy
condition)

— Probably used a secondary index

* Now, need to compute SUM(dollar_sales) for

tuples in B,




SUM without any index

* For each tuple in B, go fetch the actual tuple, and
add dollar_sales to a running sum

* /O’s: number of Sales blocks with B, tuples
— Assuming we fetch them in sorted order

SUM with a value-list index

» Assume a value-list index on Sales(dollar sales)

¢ Idea: the index contains dollar_sales values and their
counts

¢ sum = 0;
Scan index—for each indexed value v with value-list B,

sum += v X count-1-bits(B, AND B));

* I/Os: number of blocks taken by the value-list index

 Bitmaps can possibly speed up AND and reduce the size
of the index

SUM with a projection index

» Assume a project index on Sales(dollar_sales)
* Idea: merge join B and the projection index, add joining
tuples’ dollar_sales to a running sum
— Assuming both B, and the index are sorted on TID

* 1/O’s: number of blocks taken by the projection index

— Compared with a value-list index, the projection index is more
compact (no empty space or pointers), but it does store
duplicate dollar_sales values

* Also: simpler algorithm, fewer CPU operations

21

SUM with a bit-sliced index

» Assume a bit-sliced index on Sales(dollar_sales), with
slices By, By, ..., B,_,
¢ sum = 0;
fori=0tok—1:
sum += 27 x count-1-bits(B; AND B));
* 1/O’s: number of blocks taken by the bit-sliced index
» Conceptually a bit-sliced index contains the same
information as a projection index
— But the bit-sliced index doesn’t keep TID!
— Bitmap AND is faster

Summary of SUM

* Best: bit-sliced index
— Index is small
— Bycan be applied fast!
* Good: projection index
* Not bad: value-list index
— Full-fledged index carries a bigger overhead

« The fact that we have counts of values helped
« But we didn’t really need values to be ordered

23

MEDIAN

SELECT MEDIAN(dollar_sales)
FROM Sales
WHERE condition;

* Same deal: already found B, (a bitmap or a sorted
list of TID’s that point to Sales tuples that satisfy
condition)

* Now, need to find the dollar_sales value that is
greater than or equal to /2 x count-1-bits(B,)
dollar_sales values among B, tuples




MEDIAN with an ordered value-list index

* Idea: take advantage of the fact that the index is
ordered by dollar_sales

* Scan the index in order, count the number of
tuples that appeared in B, until the count reaches
Y2 % count-1-bits(B,)

 1/O’s: roughly half of the index

25

MEDIAN with a projection index

* In general, need to sort the index by dollar_sales

— Well, when you sort, you more or less get back an
ordered value-list index!

¢ Not useful unless Bfis small

MEDIAN with a bit-sliced index

* Tough at the first glance—index is not sorted

* Think of it as sorted!
— We won'’t actually take advantage of the this fact

MEDIAN with a bit-sliced index

* median = 0;

Beirrem = Bj; // which tuples we are considering
sofar =0; // number of values that are less

// than what we are considering
fori=k-1t00: Is the median not with the 0’s?

if (sofar + count-1-bits(B,,,,,,, AND NOT(B,)) «~
< X count-1-bits(B,)):
ALl O°s are B(‘urrgn[ = Bcurren[ AND B,‘; Median is with the 1’s
.- sofar += count-1-bits(B,.,,,,,, AND NOT(B));

less than these

median += 2i;
else:
B, rvent = Beurrens AND NOT(B,); Median is with the 0°s
» 1/O’s: still need to scan the entire index 28

0|0 O,VYes; continue searching
olo 1.7 for median here
Look at B, _, first Mo o
More than half are 0’s? 1|1 ¢
1l 1”' No; continue searching
""" for median here
27
Summary of MEDIAN

* Best: ordered value-list index
— It helps to be ordered!

* Pretty good: bit-sliced index
— Could beat ordered value-list index if Bfis “clustered”

* Only need to retrieve the corresponding segment

29

More variant indexes

* O’Neil and Quass, “Improved Query
Performance with Variant Indexes,” SIGMOD 97

— MIN/MAX
— And fun with range query using bit-sliced index!




