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Query Processing/Optimization

CPS 216
Advanced Database Systems
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Plan for today

• Overview of query processing
• Query execution
• Query plan enumeration
• Query rewrite heuristics
• Query rewrite in DB2
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A query’s trip through the DBMS

Parser

Validator

Optimizer

Executor

Result

SQL query SELECT title, SID
FROM Enroll, Course
WHERE Enroll.CID =

Course.CID;
Parse tree

<SFW>
<select-list>

<from-list>
<where-list>

<table> <table>

<Query>

AND

Enroll Course
…

…

Logical plan
π title, SID
σ
×

Enroll.CID = Course.CID

Enroll Course
Physical plan

PROJECT (title, SID)

MERGE-JOIN (CID)

SCAN (Enroll)
SCAN (Course)

SORT (CID)
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Parsing
• Parser: SQL → parse tree

– Good old lex & yacc
– Detect and reject syntax errors

• A short review of SQL
– SELECT Course.title Step 3: π

FROM Student, Enroll, Course Step 1: ×
WHERE Student.name = ’Bart’ Step 2: σ
AND Student.SID = Enroll.SID
AND Enroll.CID = Course.CID;

– Subqueries, aggregates
– Duplicates, NULLs
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Validation
• Validator: parse tree → logical plan
• Detect and reject semantic errors

– Nonexistent tables/views/columns?
– Insufficient access privileges?
– Type mismatches?

• Examples: AVG(name), name + GPA, Student UNION Enroll

• Also
– Expand *
– Expand view definitions

• Where does the validator get the information required for 
semantic checking?
– System catalog (contains all metadata/schema information)
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Logical plan
π title
σ Student.name = ’Bart’ AND Student.SID = Enroll.SID AND Enroll.CID = Course.CID
×

Enroll
Course×

Student

Another equivalent one:
π title
a` Enroll.CID = Course.CID

Enroll

Course

Student

a` Student.SID = Enroll.SID

σ Student.name = ’Bart’

Note: Not all systems 
use relational algebra 
to represent logical 
plans—DB2 uses 
QGM
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Physical plan

• Equivalent semantics, but not costs or assumptions!
• Optimizer: one logical plan → “best” physical plan

Even more physical plans!
PROJECT (title)

INDEX-NESTED-LOOP-JOIN (CID)

Index on Enroll(SID)

Index on Course (CID)

Index on Student(name)

INDEX-SCAN (name = ’Bart’)

INDEX-NESTED-LOOP-JOIN (SID)

PROJECT (title)

MERGE-JOIN (CID)

SCAN (Course)SORT (CID)
MERGE-JOIN (SID)

SCAN (Enroll)
SORT (SID)

SCAN (Student)

FILTER (name = ’Bart’)
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Physical plan execution
• Executor: physical plan → result

– Detect and report run-time errors
• Example: scalar subquery returns multiple tuples

• Plan is a tree of operators
• How are intermediate results passed from 

children to parents?
– Temporary files

• Compute the tree bottom-up
• Children write intermediate results to temporary files
• Parents read temporary files

– Iterator interface (next)
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Iterator interface
• Every operator maintains its own execution state 

and implements the following methods:
– open( ): Initialize state and get ready for processing
– getNext( ): Return the next tuple in the result (or a 

null pointer if there are no more tuples); adjust state to 
allow subsequent tuples to be obtained

– close( ): Clean up
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An iterator for table scan
• open( )

– Allocate buffer space
• getNext( )

– If no block of R has been read yet, read the first block from the 
disk and return the first tuple in the block (or the null pointer if 
R is empty)

– If there is no more tuple left in the current block, read the next 
block of R from the disk and return the first tuple in the block 
(or the null pointer if there are no more blocks in R)

– Return the next tuple in the block
• close( )

– Deallocate buffer space
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An iterator for nested-loop join
• open( )

– R.open( ); S.open( );
– r = R.getNext( );

• getNext( )
– Repeat until r and s join:

s = S.getNext( );
if (s = = null) {S.close( ); S.open( ); s = S.getNext( );

if (s = = null) return null; 
r = R.getNext( );
if (r = = null) return null;}

return rs;
• close( )

– R.close( ); S.close( );
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Execution of an iterator tree
• Call root.open( ), root.getNext( ) (repeat until it 

returns a null pointer, and root.close( )
• Requests go down the tree
• Intermediate result tuples go up the tree
• No intermediate files are needed!

– But still useful when an iterator is opened many times
• Example: the inner iterator in a nested-loop join
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Back to query optimization
• One logical plan → “best” physical plan
• Why bother?

– The difference in cost can be huge
π title
σ Student.name = ’Bart’ AND Student.SID = Enroll.SID AND Enroll.CID = Course.CID
×

Enroll
Course×

Student

π title
a` Enroll.CID = Course.CID

Enroll

Course

Student

a` Student.SID = Enroll.SID

σ Student.name = ’Bart’
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Query optimization!
• Conceptually

– Enumerate all possible plans (coming right up)
– Estimate costs (next week)
– Pick the “best” one (next week)

• Often the goal is not getting the optimum plan, 
but instead avoiding the horrible ones

1 second 1 hour1 minute

Any of these will do
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Plan enumeration in relational algebra

Apply relation algebra equivalences
• × and a` are associative and commutative

– Except column ordering, but that is easy to fix
– Join reordering

a`

a`

R S

T

a`

a`

S R

T

a`

a`

S R

T

…= = =
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More relational algebra equivalences
• Convert σp-× to/from bap: σp(R × S) = R bap S
• Merge/split σ’s: σp1(σp2(R)) = σp1 AND p2(R)
• Merge/split π’s: πL1(πL2(R)) = πL1(R), where L1 ⊆ L2
• Push down/pull up σ:
σp AND pr AND ps(R ba S) = σpr(R) bap σps(S), where
– pr is a predicate with only R attributes
– ps is a predicate with only S attributes
– p is a predicate with R, S attributes

• Push down π: πL(σp(R)) = πL(σp(πLL’(R)), where
– L’ is the set of attributes referenced by p that are not in L

• Many more (seemingly trivial) equivalences…
– Can be systematically used to transform a plan to new ones
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Transformation Example
π title
σ Student.name = ’Bart’ AND Student.SID = Enroll.SID AND Enroll.CID = Course.CID
×

Enroll
Course×

Student

π title
a` Enroll.CID = Course.CID

Enroll

Course

Student

a` Student.SID = Enroll.SID

σ Student.name = ’Bart’

Convert σp-× to a`p

π title
σ Enroll.CID = Course.CID
×

Enroll

Course

×

Student

σ Student.SID = Enroll.SID

σ Student.name = ’Bart’

Push down σ
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Too many plans!
• Use heuristics

– Push selections and projections down as much as 
possible

• Why? Reduce the size of intermediate results
• Why not? May be expensive; maybe joins can filter more 

effectively
– Join smaller relations first, and avoid cross product

• Why? Reduce the size of intermediate results
• Why not? Size of the join depends on the selectivity of the 

join predicate too

• Rigorous cost-based approach (next week)
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Problem with SQL
• Not exactly relational algebra—enumerating 

plans is not simple
• Subqueries and views naturally divide a query 

into nested “blocks”
– Processing each block separately forces particular join 

methods and join order
– Even if the plan is optimal for each block, it may not 

be optimal for the entire query
�Unnest query: convert subqueries/views to joins

– We know how to deal with select-project-join queries 20

DB2’s QGM
• Query Graph Model: DB2’s logical plan language

– More high-level than relational algebra
• A graph of boxes

– Leaf boxes are tables
– The standard box is the SELECT box (actually a 

select-project-join query block with optional duplicate 
elimination)

– Other types include GROUPBY (aggregation), 
UNION, INTERSECT, EXCEPT

– Can always add new types (e.g., OUTERJOIN)
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More on QGM boxes
• Head: declarative description of the output

– Schema: list of output columns
– Property: Are output tuples DISTINCT?

• Body: how to compute the output
– Quantifiers: tuple variables that range over other boxes

• F: regular tuple variable, e.g., FROM R AS r
• E: existential quantifier, e.g., IN (subquery), or = ANY (subquery)
• A: universal quantifier, e.g., > ALL (subquery)
• S: scalar subquery, e.g., = (subquery)

– Quantifiers are connected a hypergraph
• Hyperedges are predicates

– Enforce DISTINCT, preserve duplicates, or permit duplicates?
• For the output of this box, and for each quantifier
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Query rewrite in DB2
• Goal: make the logical plan as general as 

possible, i.e., merge boxes
• Rule-based transformations on QGM (Leung et 

al., in red book)
– Merge subqueries in FROM
– Convert E to F (e.g., IN/ANY subqueries to joins)
– Convert intersection to join
– Convert S to F (i.e., scalar subqueries to joins)
– Convert outerjoin to join
– Magic (i.e., correlated subqueries to joins)
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E to F conversion
• SELECT DISTINCT name

FROM Student
WHERE SID =

ANY (SELECT SID FROM Enroll);
• SELECT DISTINCT name

FROM Student, (SELECT SID FROM Enroll) t
WHERE Student.SID = t.SID;
(EtoF rule)

• SELECT DISTINCT name
FROM Student, Enroll
WHERE Student.SID = Enroll.SID; 
(SELMERGE rule)
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Problem with duplicates
Same query, without DISTINCT
• SELECT name

FROM Student
WHERE SID =

ANY (SELECT SID FROM Enroll); 
• SELECT name

FROM Student, Enroll
WHERE Student.SID = Enroll.SID; 

• Suppose two students are named Bart, and each taking 
two classes
– The first query returns two Bart’s; the second returns four
– Adding DISTINCT to the second query does not help
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A way of preserving duplicates
• SELECT name

FROM Student
WHERE SID =

ANY (SELECT SID FROM Enroll); 

• Suppose that SID is a key of Student

• SELECT DISTINCT Student.SID, name
FROM Student, Enroll
WHERE Student.SID = Enroll.SID; 
(ADDKEYS rule)

• Then simply project out Student.SID 26

Another E to F trick
• Sometimes an ANY subquery can be turned into an 

aggregate subquery without ANY

• SELECT * FROM Student s1
WHERE GPA > ANY
(SELECT GPA FROM Student s2
WHERE s2.age > s1.age);

• SELECT * FROM Student s1
WHERE GPA >
(SELECT MIN(GPA) FROM Student s2
WHERE s2.age > s1.age);
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Does the same trick apply to ALL?
• SELECT * FROM Student s1

WHERE GPA > ALL
(SELECT GPA FROM Student s2
WHERE s2.age < s1.age);

• SELECT * FROM Student s1
WHERE GPA >
(SELECT MAX(GPA) FROM Student s2
WHERE s2.age < s1.age);

• Suppose Maggie is the youngest student
– The first query returns Maggie; the second does not 28

Correlated subqueries

• SELECT CID FROM Course
WHERE title LIKE ’CPS%’
AND min_enroll > (SELECT COUNT(*) FROM Enroll

WHERE Enroll.CID = Course.CID);

• Executing correlated subquery is expensive
– The subquery is evaluated once for every CPS course

�Decorrelate!
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COUNT bug
• SELECT CID FROM Course

WHERE title LIKE ’CPS%’
AND min_enroll > (SELECT COUNT(*) FROM Enroll

WHERE Enroll.CID = Course.CID);
• SELECT CID

FROM Course, (SELECT CID, COUNT(*) AS cnt
FROM Enroll GROUP BY CID) t

WHERE t.CID = Course.CID
AND min_enroll > t.cnt;

• Suppose a CPS class is empty
– The first query returns this course; the second does not
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Magic decorrelation
• Simple idea

– Process the outer query using other predicates
• To collect bindings for correlated variables in the subquery

– Evaluate the subquery using the bindings collected
• It is a join
• Once for the entire set of bindings

– Compared to once per binding in the naïve approach

– Use the result of the subquery to refine the outer query
• Another join

• Name “magic” comes from a technique in recursive 
processing of Datalog queries
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Magic example
• Original query

– SELECT CID FROM Course
WHERE title LIKE ’CPS%’
AND min_enroll > (SELECT COUNT(*) FROM Enroll

WHERE Enroll.CID = Course.CID);

• Process the outer query without the subquery
– CREATE VIEW Supp_Course AS

SELECT * FROM Course WHERE title LIKE ’CPS%’;

• Collect bindings
– CREATE VIEW Magic AS

SELECT DISTINCT CID FROM Supp_Course; 32

Magic example
• Evaluate the subquery with bindings

– CREATE VIEW DS AS
SELECT Enroll.CID, COUNT(*) AS cnt
FROM Magic, Enroll WHERE Magic.CID = Enroll.CID
GROUP BY Enroll.CID;
UNION
SELECT Enroll.CID, 0 AS cnt (the COUNT patch)
FROM Enroll
WHERE Enroll.CID NOT IN (SELECT CID FROM Magic);

• Finally, refine the outer query
– SELECT Supp_Course.CID FROM Supp_Course, DS

WHERE Supp_Course.CID = DS.CID
AND min_enroll > DS.cnt;
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Summary of query rewrite
• Break the artificial boundary between queries and 

subqueries
• Combine as many query blocks as possible in a 

select-project-join block, where clean rules of 
relational algebra apply

• Extremely tricky stuff with duplicates, NULLs, 
empty tables, and correlation

• Next step
– Cost-based (Tuesday) optimization (Thursday) on 

each select-project-join block


