

Magic decorrelation

· Simple idea

- Process the outer query using other predicates
- · To collect bindings for correlated variables in the subquery - Evaluate the subquery using the bindings collected
 - · It is a join
 - · Once for the entire set of bindings
 - Compared to once per binding in the naïve approach
- Use the result of the subquery to refine the outer query · Another join
- Name "magic" comes from a technique in recursive processing of Datalog queries

4

Magic example (slide 1)

· Original query

- SELECT CID FROM Course WHERE title LIKE 'CPS%'
- AND min_enroll > (SELECT COUNT(*) FROM Enroll WHERE Enroll.CID = Course.CID);
- Process the outer query without the subquery CREATE VIEW Supp Course AS SELECT * FROM Course WHERE title LIKE 'CPS%';
- Collect bindings

 - CREATE VIEW Magic AS SELECT DISTINCT CID FROM Supp_Course;

Magic example (slide 2)

· Evaluate the subquery with bindings

- CREATE VIEW DS AS
- SELECT Enroll.CID, COUNT(*) AS ent FROM Magic, Enroll WHERE Magic.CID = Enroll.CID GROUP BY Enroll.CID;
- UNION
- SELECT Magic.CID, 0 AS cnt -- the COUNT patch
- FROM Magic WHERE Magic.CID NOT IN (SELECT CID FROM Enroll);
- · Finally, refine the outer query
- SELECT Supp_Course.CID FROM Supp_Course, DS WHERE Supp_Course.CID = DS.CID AND min_enroll > DS.cnt;

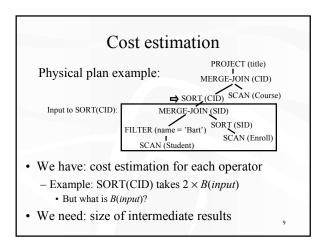
Summary of query rewrite

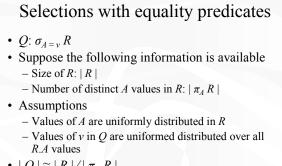
- Break the artificial boundary between queries and subqueries
- Combine as many query blocks as possible in a select-project-join block, where the clean rules of relational algebra apply
- Handle with care—extremely tricky with duplicates, NULL's, empty tables, and correlation

7

Review of the bigger picture

- · Heuristics-based optimization
 - Apply heuristics to rewrite plans into cheaper ones
- Cost-based optimization
 - Rewrite logical plan to combine blocks as much as possible
 - Optimize query block by block
 - Enumerate logical and physical plans (Thursday)
 - Estimate the cost of plans (today)
 - Pick a plan with acceptable cost (Thursday)
 - Focus: select-project-join blocks

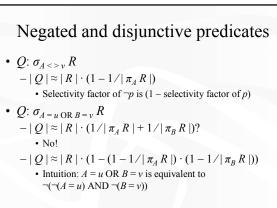




• $|Q| \approx |R| / |\pi_A R|$ - Selectivity factor of A = v is $1/|\pi_A R|$

Conjunctive predicates

- $Q: \sigma_{A=u \text{ AND } B=v} R$
- Additional assumptions
 - -A = u and B = v are independent
 - Counterexample: major and advisor
 - No "over"-selection
- Counterexample: *A* is the key • $|Q| \approx |R|/(|\pi_A R| \cdot |\pi_B R|)$
- Reduce total size by all selectivity factors



12

10

Range predicates

- $Q: \sigma_{A>v} R$
- Not enough information! - Just pick $|Q| = |R| \cdot 1/3$
- With more information
 - Largest *R*.*A* value: high(*R*.*A*)
 - Smallest R.A value: low(R.A)
 - |Q| = |R| · (high(R.A) v)/(high(R.A) low(R.A))
 In practice: sometimes the second highest and lowest are used instead

13

14

Two-way equi-join

- $Q: R(A, B) \triangleright \triangleleft S(A, C)$
- · Assumption: containment of value sets
- Every tuple in the "smaller" relation (one with fewer distinct values for the join attribute) joins with some tuple in the other relation
- That is, if $|\pi_A R| \le |\pi_A S|$ then $\pi_A R \subseteq \pi_A S$
- Certainly not true in general
- But holds in the common case of foreign key joins
- $|Q| \approx |R| \cdot |S| / \max(|\pi_A R|, |\pi_A S|)$ - Selectivity factor of R.A = S.A is $1 / \max(|\pi_A R|, |\pi_A S|)$

Multiway equi-join (slide 1)

- $Q: R(A, B) \triangleright \triangleleft S(B, C) \triangleright \triangleleft T(C, D)$
- What is the number of distinct *C* values in the join of *R* and *S*?
- Assumption: preservation of value sets
 - A non-join attribute does not lose values from its set of possible values
 - That is, if A is in R but not S, then $\pi_A (R \triangleright \triangleleft S) = \pi_A R$
 - Certainly not true in general
 - But holds in the common case of foreign key joins

Multiway equi-join (slide 2)

- $Q: R(A, B) \triangleright \triangleleft S(B, C) \triangleright \triangleleft T(C, D)$
- Start with the product of relation sizes

 $- |R| \cdot |S| \cdot |T|$

• Reduce the total size by the selectivity factor of each join predicate

$$-R.B = S.B: 1 / \max(|\pi_B R|, |\pi_B S|)$$

 $-S.C = T.C: 1/\max(|\pi_C S|, |\pi_C T|)$

$$- |Q| \approx (|R| \cdot |S| \cdot |T|) /$$

 $(\max(\mid \pi_B R \mid, \mid \pi_B S \mid) \cdot \max(\mid \pi_C S \mid, \mid \pi_C T \mid))$

Multiway equi-join (slide 3)

- A slightly more complicated example
 - $Q: R(A, B) \triangleright \triangleleft S(A, C) \triangleright \triangleleft T(A, D)$ - A is common to all three tables
 - -R.A = S.A AND R.A = T.A AND S.A = T.A
 - Suppose $|\pi_A R|$ is the smallest; consider only R.A = S.A and R.A = T.A (S.A = T.A is implied) $|A| = (R_A + S_A) + T_A (max(|\pi_B| + \pi_A S_A)) + max(|\pi_B| + \pi_A T_A))$

• $|\mathbf{Q}| \approx (|\mathbf{R}| \cdot |\mathbf{S}| \cdot |\mathbf{T}|) / (|\mathbf{a}_A(|\mathbf{A}_A R|, |\mathbf{A}_A S|) \cdot \max(|\mathbf{\pi}_A R|, |\mathbf{\pi}_A T|))$ = $(|\mathbf{R}| \cdot |\mathbf{S}| \cdot |\mathbf{T}|) / (|\mathbf{\pi}_A S| \cdot |\mathbf{\pi}_A T|)$

• In general, if a join attribute A appears in multiple tables $R_1, R_2, ..., R_n$

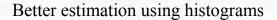
– Divide the total size by the all but the least of $|\pi_A R_i|$

Summary

- Using similar ideas, we can estimate the size of projection, duplicate elimination, union,
- difference, aggregation (with grouping)
- Lots of assumptions and very rough estimation
 - Accurate estimate is not needed
 - Fine if we overestimate or underestimate consistently
 - Sometimes may lead to very nasty optimizer "hints"
 - SELECT * FROM Student WHERE GPA > 3.9;
 - SELECT * FROM Student WHERE GPA > 3.9 AND GPA > 3.9;

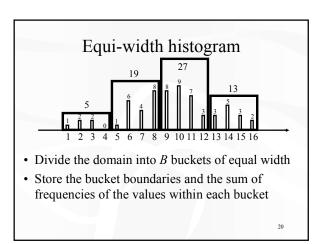
18

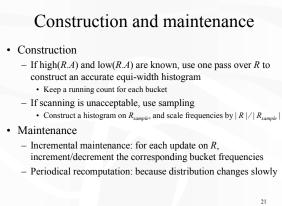
16

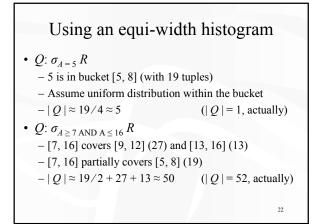


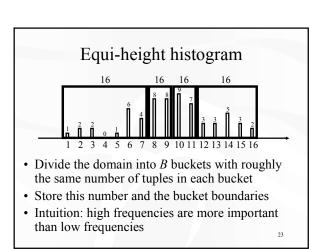
Motivation

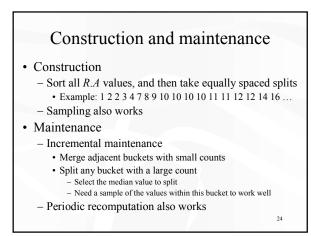
- $|R|, |\pi_A R|, high(R.A), low(R.A)$ · Too little information
- Actual distribution of R.A: $(v_1, f_1), (v_2, f_2), \dots, (v_n, f_n)$ • f_i is frequency of v_i , or the number of times v_i appears as R.A· Too much information
- Anything in between?
- Idea
 - Partition the domain of R.A into buckets
 - Store a small summary of the distribution within each bucket
 - Number of buckets is the "knob" that controls the resolution

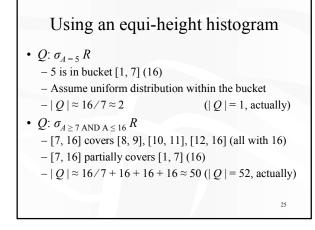












Histogram tricks

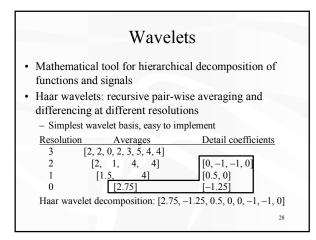
Store the number of distinct values in each bucket
 To get rid of the effects of the values with 0 frequency
 These values tend to cause underestimation

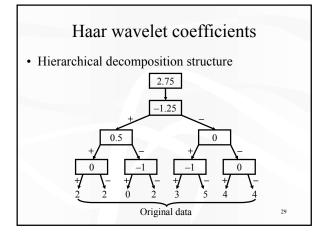
- · Compressed histogram
 - Store (v_i, f_i) pairs explicitly if f_i is high
 - For other values, use an equi-width or equi-height histogram

More histograms

- · V-optimal histogram
 - Avoid putting very different frequencies into the same bucket
 - Partition in a way to minimize $\sum_i VAR_i$, where VAR_i is the frequency variance within bucket *i*
- MaxDiff histogram
 - Define area to be the product of the frequency of a value and its "spread" (the difference between this value and the next value with non-zero frequency)
 - Insert bucket boundaries where two adjacent areas differ by large amounts
- More in Poosala et al., SIGMOD 1996

27







- Idea: use a compact subset of wavelet coefficients to approximate the data distribution (Matias et al., SIGMOD 1998)
- The function to transform is the distribution function which maps v_i to f_i
- Steps
 - Compute cumulative data distribution function C(v)
 C(v) is the number of tuples with R.A ≤ v
 - Compute wavelet transform of *C*
 - Coefficient thresholding: keep only the largest coefficients in absolute normalized value
 For Haar wavelets, divide coefficients at resolution *j* by 2^(j/2) 30

Using a wavelet-based histogram

- $Q: \sigma_{A > u \text{ AND } A \leq v} R$
- $|Q| = C(v) \overline{C(u)}$
- Search the tree to reconstruct C(v) and C(u)
 - Worst case: two paths, *O*(log *N*), where *N* is the size of the domain
 - If we just store B coefficients, it becomes O(B), but answers are now approximate

31