
1

Query Optimization

CPS 216
Advanced Database Systems

2

Correlated subqueries

• SELECT CID FROM Course
WHERE title LIKE ’CPS%’
AND min_enroll > (SELECT COUNT(*) FROM Enroll

WHERE Enroll.CID = Course.CID);

• Executing correlated subquery is expensive
– The subquery is evaluated once for every CPS course

�Decorrelate!

3

COUNT bug
• SELECT CID FROM Course

WHERE title LIKE ’CPS%’
AND min_enroll > (SELECT COUNT(*) FROM Enroll

WHERE Enroll.CID = Course.CID);
• SELECT CID

FROM Course, (SELECT CID, COUNT(*) AS cnt
FROM Enroll GROUP BY CID) t

WHERE t.CID = Course.CID AND min_enroll > t.cnt
AND title LIKE ’CPS%’;

First compute the enrollment for all(?) courses

2

4

Magic decorrelation
• Simple idea

– Process the outer query using other predicates
• To collect bindings for correlated variables in the subquery

– Evaluate the subquery using the bindings collected
• It is a join
• Once for the entire set of bindings

– Compared to once per binding in the naïve approach

– Use the result of the subquery to refine the outer query
• Another join

• Name “magic” comes from a technique in recursive
processing of Datalog queries

5

Magic example (slide 1)

• Original query
– SELECT CID FROM Course

WHERE title LIKE ’CPS%’
AND min_enroll > (SELECT COUNT(*) FROM Enroll

WHERE Enroll.CID = Course.CID);

• Process the outer query without the subquery
– CREATE VIEW Supp_Course AS

SELECT * FROM Course WHERE title LIKE ’CPS%’;

• Collect bindings
– CREATE VIEW Magic AS

SELECT DISTINCT CID FROM Supp_Course;

6

Magic example (slide 2)

• Evaluate the subquery with bindings
– CREATE VIEW DS AS

SELECT Enroll.CID, COUNT(*) AS cnt
FROM Magic, Enroll WHERE Magic.CID = Enroll.CID
GROUP BY Enroll.CID;
UNION
SELECT Magic.CID, 0 AS cnt -- the COUNT patch
FROM Magic
WHERE Magic.CID NOT IN (SELECT CID FROM Enroll);

• Finally, refine the outer query
– SELECT Supp_Course.CID FROM Supp_Course, DS

WHERE Supp_Course.CID = DS.CID
AND min_enroll > DS.cnt;

3

7

Summary of query rewrite
• Break the artificial boundary between queries and

subqueries
• Combine as many query blocks as possible in a

select-project-join block, where the clean rules of
relational algebra apply

• Handle with care—extremely tricky with
duplicates, NULL’s, empty tables, and correlation

8

Review of the bigger picture
• Heuristics-based optimization

– Apply heuristics to rewrite plans into cheaper ones
• Cost-based optimization

– Rewrite logical plan to combine blocks as much as
possible

– Optimize query block by block
• Enumerate logical and physical plans (Thursday)
• Estimate the cost of plans (today)
• Pick a plan with acceptable cost (Thursday)

– Focus: select-project-join blocks

9

Cost estimation

• We have: cost estimation for each operator
– Example: SORT(CID) takes 2 × B(input)

• But what is B(input)?

• We need: size of intermediate results

PROJECT (title)

MERGE-JOIN (CID)

SCAN (Course)SORT (CID)
MERGE-JOIN (SID)

SCAN (Enroll)
SORT (SID)

SCAN (Student)

FILTER (name = ’Bart’)

Physical plan example:

Input to SORT(CID):

4

10

Selections with equality predicates
• Q: σA = v R
• Suppose the following information is available

– Size of R: | R |
– Number of distinct A values in R: | πA R |

• Assumptions
– Values of A are uniformly distributed in R
– Values of v in Q are uniformed distributed over all

R.A values
• | Q | ≈ | R | ⁄ | πA R |

– Selectivity factor of A = v is 1 ⁄ | πA R |

11

Conjunctive predicates
• Q: σA = u AND B = v R
• Additional assumptions

– A = u and B = v are independent
• Counterexample: major and advisor

– No “over”-selection
• Counterexample: A is the key

• | Q | ≈ | R | ⁄ (| πA R | · | πB R |)
– Reduce total size by all selectivity factors

12

Negated and disjunctive predicates
• Q: σA < > v R

– | Q | ≈ | R | · (1 – 1 ⁄ | πA R |)
• Selectivity factor of ¬p is (1 – selectivity factor of p)

• Q: σA = u OR B = v R
– | Q | ≈ | R | · (1 ⁄ | πA R | + 1 ⁄ | πB R |)?

• No!
– | Q | ≈ | R | · (1 – (1 – 1 ⁄ | πA R |) · (1 – 1 ⁄ | πB R |))

• Intuition: A = u OR B = v is equivalent to
¬(¬(A = u) AND ¬(B = v))

5

13

Range predicates
• Q: σA > v R
• Not enough information!

– Just pick | Q | = | R | · 1 ⁄ 3
• With more information

– Largest R.A value: high(R.A)
– Smallest R.A value: low(R.A)
– | Q | = | R | · (high(R.A) – v) ⁄ (high(R.A) – low(R.A))
– In practice: sometimes the second highest and lowest

are used instead
•

14

Two-way equi-join
• Q: R(A, B) ba S(A, C)
• Assumption: containment of value sets

– Every tuple in the “smaller” relation (one with fewer
distinct values for the join attribute) joins with some
tuple in the other relation

– That is, if | πA R | ≤ | πA S | then πA R ⊆ πA S
– Certainly not true in general
– But holds in the common case of foreign key joins

• | Q | ≈ | R | · | S | ⁄ max(| πA R |, | πA S |)
– Selectivity factor of R.A = S.A is

1 ⁄ max(| πA R |, | πA S |)

15

Multiway equi-join (slide 1)

• Q: R(A, B) ba S(B, C) ba T(C, D)
• What is the number of distinct C values in the

join of R and S?
• Assumption: preservation of value sets

– A non-join attribute does not lose values from its set
of possible values

– That is, if A is in R but not S, then πA (R ba S) = πA R
– Certainly not true in general
– But holds in the common case of foreign key joins

6

16

Multiway equi-join (slide 2)

• Q: R(A, B) ba S(B, C) ba T(C, D)
• Start with the product of relation sizes

– | R | · | S | · | T |
• Reduce the total size by the selectivity factor of

each join predicate
– R.B = S.B: 1 ⁄ max(| πB R |, | πB S |)
– S.C = T.C: 1 ⁄ max(| πC S |, | πC T |)
– | Q | ≈ (| R | · | S | · | T |) ⁄

(max(| πB R |, | πB S |) · max(| πC S |, | πC T |))

17

Multiway equi-join (slide 3)

• A slightly more complicated example
Q: R(A, B) ba S(A, C) ba T(A, D)
– A is common to all three tables
– R.A = S.A AND R.A = T.A AND S.A = T.A
– Suppose | πA R | is the smallest; consider only R.A = S.A and

R.A = T.A (S.A = T.A is implied)
• | Q | ≈ (| R | · | S | · | T |) ⁄ (max(| πA R |, | πA S |) · max(| πA R |, | πA T |))

= (| R | · | S | · | T |) ⁄ (| πA S | · | πA T |)

• In general, if a join attribute A appears in multiple tables
R1, R2, …, Rn
– Divide the total size by the all but the least of | πA Ri |

18

Summary
• Using similar ideas, we can estimate the size of

projection, duplicate elimination, union,
difference, aggregation (with grouping)

• Lots of assumptions and very rough estimation
– Accurate estimate is not needed
– Fine if we overestimate or underestimate consistently
– Sometimes may lead to very nasty optimizer “hints”

• SELECT * FROM Student WHERE GPA > 3.9;
• SELECT * FROM Student WHERE GPA > 3.9

AND GPA > 3.9;

7

19

Better estimation using histograms
• Motivation

– | R |, | πA R |, high(R.A), low(R.A)
• Too little information

– Actual distribution of R.A: (v1, f1), (v2, f2), …, (vn, fn)
• fi is frequency of vi, or the number of times vi appears as R.A
• Too much information

– Anything in between?
• Idea

– Partition the domain of R.A into buckets
– Store a small summary of the distribution within each bucket
– Number of buckets is the “knob” that controls the resolution

20

Equi-width histogram

• Divide the domain into B buckets of equal width
• Store the bucket boundaries and the sum of

frequencies of the values within each bucket

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1
2 2

0
1

3
4

8 8
9

7
6

5
3

2
3

5

19
27

13

21

Construction and maintenance
• Construction

– If high(R.A) and low(R.A) are known, use one pass over R to
construct an accurate equi-width histogram

• Keep a running count for each bucket

– If scanning is unacceptable, use sampling
• Construct a histogram on Rsample, and scale frequencies by | R | ⁄ | Rsample |

• Maintenance
– Incremental maintenance: for each update on R,

increment/decrement the corresponding bucket frequencies
– Periodical recomputation: because distribution changes slowly

8

22

Using an equi-width histogram
• Q: σA = 5 R

– 5 is in bucket [5, 8] (with 19 tuples)
– Assume uniform distribution within the bucket
– | Q | ≈ 19 ⁄ 4 ≈ 5 (| Q | = 1, actually)

• Q: σA ≥ 7 AND A ≤ 16 R
– [7, 16] covers [9, 12] (27) and [13, 16] (13)
– [7, 16] partially covers [5, 8] (19)
– | Q | ≈ 19 ⁄ 2 + 27 + 13 ≈ 50 (| Q | = 52, actually)

23

Equi-height histogram

• Divide the domain into B buckets with roughly
the same number of tuples in each bucket

• Store this number and the bucket boundaries
• Intuition: high frequencies are more important

than low frequencies

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1
2 2

0
1

3
4

8 8
9

7
6

5
3

2
3

16161616

24

Construction and maintenance
• Construction

– Sort all R.A values, and then take equally spaced splits
• Example: 1 2 2 3 4 7 8 9 10 10 10 10 11 11 12 12 14 16 …

– Sampling also works
• Maintenance

– Incremental maintenance
• Merge adjacent buckets with small counts
• Split any bucket with a large count

– Select the median value to split
– Need a sample of the values within this bucket to work well

– Periodic recomputation also works

9

25

Using an equi-height histogram
• Q: σA = 5 R

– 5 is in bucket [1, 7] (16)
– Assume uniform distribution within the bucket
– | Q | ≈ 16 ⁄ 7 ≈ 2 (| Q | = 1, actually)

• Q: σA ≥ 7 AND A ≤ 16 R
– [7, 16] covers [8, 9], [10, 11], [12, 16] (all with 16)
– [7, 16] partially covers [1, 7] (16)
– | Q | ≈ 16 ⁄ 7 + 16 + 16 + 16 ≈ 50 (| Q | = 52, actually)

26

Histogram tricks
• Store the number of distinct values in each bucket

– To get rid of the effects of the values with 0 frequency
• These values tend to cause underestimation

• Compressed histogram
– Store (vi, fi) pairs explicitly if fi is high
– For other values, use an equi-width or equi-height

histogram

27

More histograms
• V-optimal histogram

– Avoid putting very different frequencies into the same bucket
– Partition in a way to minimize ∑i VARi, where VARi is the

frequency variance within bucket i
• MaxDiff histogram

– Define area to be the product of the frequency of a value and
its “spread” (the difference between this value and the next
value with non-zero frequency)

– Insert bucket boundaries where two adjacent areas differ by
large amounts

• More in Poosala et al., SIGMOD 1996

10

28

Wavelets
• Mathematical tool for hierarchical decomposition of

functions and signals
• Haar wavelets: recursive pair-wise averaging and

differencing at different resolutions
– Simplest wavelet basis, easy to implement
Resolution Averages Detail coefficients

3 [2, 2, 0, 2, 3, 5, 4, 4]
2 [2, 1, 4, 4] [0, –1, –1, 0]
1 [1.5, 4] [0.5, 0]
0 [2.75] [–1.25]

Haar wavelet decomposition: [2.75, –1.25, 0.5, 0, 0, –1, –1, 0]

29

Haar wavelet coefficients
• Hierarchical decomposition structure

2.75

–1.25

0.5 0

0 –1 –1 0

+ –

+

+ + + +

– –

––––

+

2 2 20 3 5 4 4

Original data

30

Wavelet-based histogram
• Idea: use a compact subset of wavelet coefficients to

approximate the data distribution (Matias et al.,
SIGMOD 1998)
– The function to transform is the distribution function which

maps vi to fi

• Steps
– Compute cumulative data distribution function C(v)

• C(v) is the number of tuples with R.A ≤ v

– Compute wavelet transform of C
– Coefficient thresholding: keep only the largest coefficients in

absolute normalized value
• For Haar wavelets, divide coefficients at resolution j by 2 (j ⁄ 2)

11

31

Using a wavelet-based histogram
• Q: σA > u AND A ≤ v R
• | Q | = C(v) – C(u)
• Search the tree to reconstruct C(v) and C(u)

– Worst case: two paths, O(log N), where N is the size
of the domain

– If we just store B coefficients, it becomes O(B), but
answers are now approximate

