Query Optimization

CPS 216
Advanced Database Systems

Correlated subqueries

- SELECT CID FROM Course ...
 WHERE title LIKE 'CPS%'
 AND min_enroll > (SELECT COUNT(*) FROM Enroll WHERE Enroll.CID = Course.CID);
- · Executing correlated subquery is expensive
 - The subquery is evaluated once for every CPS course
- ➤ Decorrelate!

2

COUNT bug

- SELECT CID FROM Course
 WHERE title LIKE 'CPS%'
 AND min_enroll > (SELECT COUNT(*) FROM Enroll
 WHERE Enroll.CID = Course.CID);
- FIRST COMPUTE THE ENDING HER SELECT CID First compute the enrollment for all(?) courses FROM Course, (SELECT CID, COUNT(*) AS cnt FROM Enroll GROUP BY CID) t

WHERE t.CID = Course.CID AND min_enroll > t.cnt AND title LIKE 'CPS%';

- · Suppose a CPS class is empty
 - The first query returns this course; the second does not

Magic decorrelation

- · Simple idea
 - Process the outer query using other predicates
 - To collect bindings for correlated variables in the subquery
 - Evaluate the subquery using the bindings collected
 - It is a join
 - · Once for the entire set of bindings
 - Compared to once per binding in the naïve approach
 - Use the result of the subquery to refine the outer query
 - Another join
- Name "magic" comes from a technique in recursive processing of Datalog queries

4

Magic example (slide 1)

- · Original query
 - SELECT CID FROM Course
 WHERE title LIKE 'CPS%'
 AND min_enroll > (SELECT COUNT(*) FROM Enroll
 WHERE Enroll.CID = Course.CID);
- Process the outer query without the subquery
 - CREATE VIEW Supp_Course AS SELECT * FROM Course WHERE title LIKE 'CPS%';
- · Collect bindings
 - CREATE VIEW Magic AS SELECT DISTINCT CID FROM Supp_Course;

Magic example (slide 2)

- · Evaluate the subquery with bindings
 - CREATE VIEW DS AS
 SELECT Enroll.CID, COUNT(*) AS cnt
 FROM Magic, Enroll WHERE Magic.CID = Enroll.CID
 GROUP BY Enroll.CID;
 UNION

SELECT Magic.CID, 0 AS cnt -- the COUNT patch FROM Magic WHERE Magic.CID NOT IN (SELECT CID FROM Enroll);

- · Finally, refine the outer query
 - SELECT Supp_Course.CID FROM Supp_Course, DS
 WHERE Supp_Course.CID = DS.CID
 AND min_enroll > DS.cnt;

Summary of query rewrite

- Break the artificial boundary between queries and subqueries
- Combine as many query blocks as possible in a select-project-join block, where the clean rules of relational algebra apply
- Handle with care—extremely tricky with duplicates, NULL's, empty tables, and correlation

Review of the bigger picture

- · Heuristics-based optimization
 - Apply heuristics to rewrite plans into cheaper ones
- Cost-based optimization
 - Rewrite logical plan to combine blocks as much as possible
 - Optimize query block by block
 - Enumerate logical and physical plans (Thursday)
 - Estimate the cost of plans (today)
 - Pick a plan with acceptable cost (Thursday)
 - Focus: select-project-join blocks

Cost estimation

Physical plan example:

PROJECT (title)

I

MERGE-JOIN (CID)

Input to SORT(CID):

⇒ SORT (CID) SCAN (Course)

MERGE-JOIN (SID)

FILTER (name = 'Bart') SORT (SID)

SCAN (Enroll)

SCAN (Enroll)

- We have: cost estimation for each operator
 - Example: SORT(CID) takes $2 \times B(input)$
 - But what is *B(input)*?
- We need: size of intermediate results

Selections with equality predicates

- $Q: \sigma_{A=v} R$
- Suppose the following information is available
 - Size of R: |R|
 - Number of distinct A values in R: $|\pi_A R|$
- Assumptions
 - Values of A are uniformly distributed in R
 - Values of v in Q are uniformed distributed over all R.A values
- $|Q| \approx |R|/|\pi_A R|$
 - Selectivity factor of A = v is $1/|\pi_4 R|$

Conjunctive predicates

- $Q: \sigma_{A=u \text{ AND } B=v} R$
- Additional assumptions
 - -A = u and B = v are independent
 - · Counterexample: major and advisor
 - No "over"-selection
 - Counterexample: A is the key
- $|Q| \approx |R|/(|\pi_A R| \cdot |\pi_B R|)$
 - Reduce total size by all selectivity factors

Negated and disjunctive predicates

- $Q: \sigma_{A <> v} R$
 - $-|Q|\approx |R|\cdot (1-1/|\pi_A R|)$
 - Selectivity factor of $\neg p$ is (1 selectivity factor of p)
- $Q: \sigma_{A=u \text{ OR } B=v} R$
 - $-|Q| \approx |R| \cdot (1/|\pi_A R| + 1/|\pi_B R|)$?
 - No! Tuples satisfying A = u AND B = v are counted twice
 - $-|Q| \approx |R| \cdot (1 (1 1/|\pi_A R|) \cdot (1 1/|\pi_R R|))$
 - Intuition: A = u OR B = v is equivalent to $\neg(\neg(A = u) \text{ AND } \neg(B = v))$

Range predicates

- $Q: \sigma_{A>v} R$
- Not enough information!
 - Just pick $|Q| = |R| \cdot 1/3$
- · With more information
 - Largest R.A value: high(R.A)
 - Smallest R.A value: low(R.A)
 - $-|Q| = |R| \cdot (\operatorname{high}(R.A) v) / (\operatorname{high}(R.A) \operatorname{low}(R.A))$
 - In practice: sometimes the second highest and lowest are used instead
 - The highest and the lowest are often used by inexperienced database designers to represent invalid values

Two-way equi-join

- $Q: R(A, B) \rhd \triangleleft S(A, C)$
- Assumption: containment of value sets
 - Every tuple in the "smaller" relation (one with fewer distinct values for the join attribute) joins with some tuple in the other relation
 - That is, if $|\pi_A R| \le |\pi_A S|$ then $\pi_A R \subseteq \pi_A S$
 - Certainly not true in general
 - But holds in the common case of foreign key joins
- $|Q| \approx |R| \cdot |S| / \max(|\pi_A R|, |\pi_A S|)$
 - Selectivity factor of R.A = S.A is $1/\max(|\pi_A R|, |\pi_A S|)$

Multiway equi-join (slide 1)

- $Q: R(A, B) \triangleright \triangleleft S(B, C) \triangleright \triangleleft T(C, D)$
- What is the number of distinct *C* values in the join of *R* and *S*?
- Assumption: preservation of value sets
 - A non-join attribute does not lose values from its set of possible values
 - That is, if A is in R but not S, then $\pi_A(R \triangleright \triangleleft S) = \pi_A R$
 - Certainly not true in general
 - But holds in the common case of foreign key joins

15

Multiway equi-join (slide 2)

- $Q: R(A, B) \triangleright \triangleleft S(B, C) \triangleright \triangleleft T(C, D)$
- Start with the product of relation sizes
 | R | · | S | · | T |
- Reduce the total size by the selectivity factor of each join predicate
 - $-R.B = S.B: 1/\max(|\pi_B R|, |\pi_B S|)$
 - $-S.C = T.C: 1/\max(|\pi_C S|, |\pi_C T|)$
 - $\begin{aligned} &-\mid \mathbf{Q}\mid \approx (\mid \mathbf{R}\mid \cdot \mid \mathbf{S}\mid \cdot \mid \mathbf{T}\mid)/\\ &(\max(\mid \pi_{B} R\mid ,\mid \pi_{B} S\mid) \cdot \max(\mid \pi_{C} S\mid ,\mid \pi_{C} T\mid))\end{aligned}$

16

Multiway equi-join (slide 3)

- A slightly more complicated example $Q: R(A, B) \triangleright \triangleleft S(A, C) \triangleright \triangleleft T(A, D)$
 - A is common to all three tables
 - -R.A = S.A AND R.A = T.A AND S.A = T.A
 - Suppose $\mid \pi_A R \mid$ is the smallest; consider only R.A = S.A and R.A = T.A (S.A = T.A is implied)
 - $\mid Q \mid \approx (\mid R \mid \cdot \mid S \mid \cdot \mid T \mid) / (\max(\mid \pi_A R \mid, \mid \pi_A S \mid) \cdot \max(\mid \pi_A R \mid, \mid \pi_A T \mid))$ = $(\mid R \mid \cdot \mid S \mid \cdot \mid T \mid) / (\mid \pi_A S \mid \cdot \mid \pi_A T \mid)$
- In general, if a join attribute A appears in multiple tables $R_1, R_2, ..., R_n$
 - Divide the total size by the all but the least of $|\pi_A R_i|$

17

Summary

- Using similar ideas, we can estimate the size of projection, duplicate elimination, union, difference, aggregation (with grouping)
- Lots of assumptions and very rough estimation
 - Accurate estimate is not needed
 - Fine if we overestimate or underestimate consistently
 - Sometimes may lead to very nasty optimizer "hints"
 - SELECT * FROM Student WHERE GPA > 3.9;
 - SELECT * FROM Student WHERE GPA > 3.9 AND GPA > 3.9:

Better estimation using histograms

- · Motivation
 - $|R|, |\pi_A R|, \text{ high}(R.A), \text{low}(R.A)$
 - · Too little information
 - Actual distribution of R.A: $(v_1, f_1), (v_2, f_2), ..., (v_n, f_n)$
 - f_i is frequency of v_i , or the number of times v_i appears as R.A
 - · Too much information
 - Anything in between?
- Idaa
 - Partition the domain of R.A into buckets
 - Store a small summary of the distribution within each bucket
 - Number of buckets is the "knob" that controls the resolution

...

- Divide the domain into B buckets of equal width
- Store the bucket boundaries and the sum of frequencies of the values within each bucket

20

Construction and maintenance

- Construction
 - If high(R.A) and low(R.A) are known, use one pass over R to construct an accurate equi-width histogram
 - · Keep a running count for each bucket
 - If scanning is unacceptable, use sampling
 - Construct a histogram on R_{sample} , and scale frequencies by $|R|/|R_{sample}|$
- Maintenance
 - Incremental maintenance: for each update on R, increment/decrement the corresponding bucket frequencies
 - Periodical recomputation: because distribution changes slowly

21

Using an equi-width histogram

- $Q: \sigma_{A=5} R$
 - 5 is in bucket [5, 8] (with 19 tuples)
 - Assume uniform distribution within the bucket
 - $-|Q|\approx 19/4\approx 5$

(|Q| = 1, actually)

- $Q: \sigma_{A \geq 7 \text{ AND A} \leq 16} R$
 - [7, 16] covers [9, 12] (27) and [13, 16] (13)
 - [7, 16] partially covers [5, 8] (19)
 - $-|Q| \approx 19/2 + 27 + 13 \approx 50$

(|Q| = 52, actually)

22

Equi-height histogram

- Divide the domain into *B* buckets with roughly the same number of tuples in each bucket
- Store this number and the bucket boundaries
- Intuition: high frequencies are more important than low frequencies

Construction and maintenance

- Construction
 - Sort all R.A values, and then take equally spaced splits
 - Example: 1 2 2 3 4 7 8 9 10 10 10 10 11 11 12 12 14 16 ...
 - Sampling also works
- Maintenance
 - Incremental maintenance
 - · Merge adjacent buckets with small counts
 - · Split any bucket with a large count
 - Select the median value to split
 - Need a sample of the values within this bucket to work well
 - Periodic recomputation also works

Using an equi-height histogram

- $Q: \sigma_{A=5} R$
 - 5 is in bucket [1, 7] (16)
 - Assume uniform distribution within the bucket

 $-|Q|\approx 16/7\approx 2$

(|Q| = 1, actually)

- $Q: \sigma_{A \geq 7 \text{ AND A} \leq 16} R$
 - [7, 16] covers [8, 9], [10, 11], [12, 16] (all with 16)
 - [7, 16] partially covers [1, 7] (16)
 - $-|Q| \approx 16/7 + 16 + 16 + 16 \approx 50$ (|Q| = 52, actually)

25

Histogram tricks

- Store the number of distinct values in each bucket
 - To get rid of the effects of the values with 0 frequency
 - These values tend to cause underestimation
- Compressed histogram
 - Store (v_i, f_i) pairs explicitly if f_i is high
 - For other values, use an equi-width or equi-height histogram

26

More histograms

- · V-optimal histogram
 - Avoid putting very different frequencies into the same bucket
 - Partition in a way to minimize $\sum_{i} VAR_{i}$, where VAR_{i} is the frequency variance within bucket i
- · MaxDiff histogram
 - Define area to be the product of the frequency of a value and its "spread" (the difference between this value and the next value with non-zero frequency)
 - Insert bucket boundaries where two adjacent areas differ by large amounts
- More in Poosala et al., SIGMOD 1996