Query Optimization

CPS 216
Advanced Database Systems

COUNT bug

- SELECT CID FROM Course

WHERE title LIKE 'CPS\%'
AND min_enroll > (SELECT COUNT(*) FROM Enroll WHERE Enroll.CID = Course.CID);

- SELECT CID First compute the enrollment for all(?) courses FROM Course, (SELECT CID, COUNT (*) AS cnt

FROM Enroll GROUP BY CID) t
WHERE t.CID = Course.CID AND min_enroll > t.cnt AND title LIKE 'CPS\%';

- Suppose a CPS class is empty
- The first query returns this course; the second does not

Correlated subqueries

SELECT CID FRO WHERE title LIK	MM Course ' ${ }^{\text {CPS }}{ }^{\prime}$ '
AND min_enroll >	SELECT COUNT** FROM Enrol WHERE Enroll.CID = Course.CID

- Executing correlated subquery is expensive
- The subquery is evaluated once for every CPS course
$>$ Decorrelate!

Magic decorrelation

- Simple idea
- Process the outer query using other predicates
- To collect bindings for correlated variables in the subquery
- Evaluate the subquery using the bindings collected
- It is a join
- Once for the entire set of bindings
- Compared to once per binding in the naïve approach
- Use the result of the subquery to refine the outer query
- Another join
- Name "magic" comes from a technique in recursive processing of Datalog queries

Magic example (slide 1)

- Original query
- SELECT CID FROM Course WHERE title LIKE 'CPS\%'
AND min_enroll > (SELECT COUNT(*) FROM Enroll WHERE Enroll.CID = Course.CID);
- Process the outer query without the subquery
- CREATE VIEW Supp_Course AS SELECT * FROM Course WHERE title LIKE 'CPS\%';
- Collect bindings
- CREATE VIEW Magic AS

SELECT DISTINCT CID FROM Supp_Course;

Magic example (slide 2)

- Evaluate the subquery with bindings

CREATE VIEW DS AS

SELECT Enroll.CID, COUNT(*) AS cnt FROM Magic, Enroll WHERE Magic.CID = Enroll.CID GROUP BY Enroll.CID; UNION
SELECT Magic.CID, 0 AS cnt -- the COUNT patch FROM Magic
WHERE Magic.CID NOT IN (SELECT CID FROM Enroll);

- Finally, refine the outer query
- SELECT Supp_Course.CID FROM Supp_Course, DS WHERE Supp_Course.CID = DS.CID
AND min_enroll > DS.cnt; 6

Summary of query rewrite

- Break the artificial boundary between queries and subqueries
- Combine as many query blocks as possible in a select-project-join block, where the clean rules of relational algebra apply
- Handle with care-extremely tricky with duplicates, NULL's, empty tables, and correlation

Cost estimation

- We have: cost estimation for each operator
- Example: SORT(CID) takes $2 \times B$ (input)
- But what is B (input)?
- We need: size of intermediate results

Review of the bigger picture

- Heuristics-based optimization
- Apply heuristics to rewrite plans into cheaper ones
- Cost-based optimization
- Rewrite logical plan to combine blocks as much as possible
- Optimize query block by block
- Enumerate logical and physical plans (Thursday)
- Estimate the cost of plans (today)
- Pick a plan with acceptable cost (Thursday)
- Focus: select-project-join blocks

Selections with equality predicates

- Q: $\sigma_{A=v} R$
- Suppose the following information is available
- Size of R : $|R|$
- Number of distinct A values in R : $\left|\pi_{A} R\right|$
- Assumptions
- Values of A are uniformly distributed in R
- Values of v in Q are uniformed distributed over all $R . A$ values
- $|Q| \approx|R| /\left|\pi_{A} R\right|$
- Selectivity factor of $A=v$ is $1 /\left|\pi_{A} R\right|$

Negated and disjunctive predicates

- $Q: \sigma_{A<>v} R$
$-|Q| \approx|R| \cdot\left(1-1 /\left|\pi_{A} R\right|\right)$
- Selectivity factor of $\neg p$ is ($1-$ selectivity factor of p)
- $Q: \sigma_{A=u \text { OR } B=v} R$
$-|Q| \approx|R| \cdot\left(1 /\left|\pi_{A} R\right|+1 /\left|\pi_{B} R\right|\right)$?
- No! Tuples satisfying $A=u$ AND $B=v$ are counted twice
$-|Q| \approx|R| \cdot\left(1-\left(1-1 /\left|\pi_{A} R\right|\right) \cdot\left(1-1 /\left|\pi_{B} R\right|\right)\right)$
- Intuition: $A=u$ OR $B=v$ is equivalent to $\neg(\neg(A=u)$ AND $\neg(B=v))$

Range predicates

- Q: $\sigma_{A>v} R$
- Not enough information!
- Just pick $|Q|=|R| \cdot 1 / 3$
- With more information
- Largest R.A value: high(R.A)
- Smallest $R . A$ value: $\operatorname{low}(R . A)$
$-|Q|=|R| \cdot(\operatorname{high}(R . A)-v) /(\operatorname{high}(R . A)-\operatorname{low}(R . A))$
- In practice: sometimes the second highest and lowest are used instead
- The highest and the lowest are often used by inexperienced database designers to represent invalid values

Two-way equi-join

- $Q: R(A, B) \triangleright \triangleleft S(A, C)$
- Assumption: containment of value sets
- Every tuple in the "smaller" relation (one with fewer distinct values for the join attribute) joins with some tuple in the other relation
- That is, if $\left|\pi_{A} R\right| \leq\left|\pi_{A} S\right|$ then $\pi_{A} R \subseteq \pi_{A} S$
- Certainly not true in general
- But holds in the common case of foreign key joins
- $|Q| \approx|R| \cdot|S| / \max \left(\left|\pi_{A} R\right|,\left|\pi_{A} S\right|\right)$
- Selectivity factor of $R . A=S . A$ is $1 / \max \left(\left|\pi_{A} R\right|,\left|\pi_{A} S\right|\right)$

Multiway equi-join (slide 1)

- $Q: R(A, B) \triangleright \triangleleft S(B, C) \triangleright \triangleleft T(C, D)$
- What is the number of distinct C values in the join of R and S ?
- Assumption: preservation of value sets
- A non-join attribute does not lose values from its set of possible values
- That is, if A is in R but not S, then $\pi_{A}(R \triangleright \triangleleft S)=\pi_{A} R$
- Certainly not true in general
- But holds in the common case of foreign key joins

Multiway equi-join (slide 2)

- $Q: R(A, B) \triangleright \triangleleft S(B, C) \triangleright \triangleleft T(C, D)$
- Start with the product of relation sizes $-|R| \cdot|S| \cdot|T|$
- Reduce the total size by the selectivity factor of each join predicate

```
\(-R . B=S . B: 1 / \max \left(\left|\pi_{B} R\right|,\left|\pi_{B} S\right|\right)\)
\(-S . C=T . C: 1 / \max \left(\left|\pi_{C} S\right|,\left|\pi_{C} T\right|\right)\)
\(-|\mathrm{Q}| \approx(|\mathrm{R}| \cdot|\mathrm{S}| \cdot|\mathrm{T}|) /\)
    \(\left(\max \left(\left|\pi_{B} R\right|,\left|\pi_{B} S\right|\right) \cdot \max \left(\left|\pi_{C} S\right|,\left|\pi_{C} T\right|\right)\right)\)
```


Summary

- Using similar ideas, we can estimate the size of projection, duplicate elimination, union, difference, aggregation (with grouping)
- Lots of assumptions and very rough estimation
- Accurate estimate is not needed
- Fine if we overestimate or underestimate consistently
- Sometimes may lead to very nasty optimizer "hints"
- SELECT * FROM Student WHERE GPA > 3.9;
- SELECT * FROM Student WHERE GPA > 3.9 AND GPA > 3.9;

Better estimation using histograms

- Motivation

$-|R|,\left|\pi_{A} R\right|, \operatorname{high}(R . A), \operatorname{low}(R . A)$

- Too little information
- Actual distribution of R.A: $\left(v_{1}, f_{1}\right),\left(v_{2}, f_{2}\right), \ldots,\left(v_{n}, f_{n}\right)$
- f_{i} is frequency of v_{i}, or the number of times v_{i} appears as $R . A$
- Too much information
- Anything in between?
- Idea
- Partition the domain of R.A into buckets
- Store a small summary of the distribution within each bucket
- Number of buckets is the "knob" that controls the resolution

Equi-width histogram

- Divide the domain into B buckets of equal width
- Store the bucket boundaries and the sum of frequencies of the values within each bucket

Using an equi-width histogram

- $Q: \sigma_{A=5} R$
-5 is in bucket [5, 8] (with 19 tuples)
- Assume uniform distribution within the bucket
$-|Q| \approx 19 / 4 \approx 5 \quad(|Q|=1$, actually $)$
- $Q: \sigma_{A \geq 7 \mathrm{AND} \mathrm{A} \leq 16} R$
$-[7,16]$ covers $[9,12](27)$ and $[13,16]$ (13)
$-[7,16]$ partially covers [5, 8] (19)
$-|Q| \approx 19 / 2+27+13 \approx 50 \quad(|Q|=52$, actually $)$

Construction and maintenance

- Construction
- Sort all R.A values, and then take equally spaced splits
- Example: 1223478910101010111112121416 ...
- Sampling also works
- Maintenance
- Incremental maintenance
- Merge adjacent buckets with small counts
- Split any bucket with a large count
- Select the median value to split
- Need a sample of the values within this bucket to work well
- Periodic recomputation also works

Using an equi-height histogram

- $Q: \sigma_{A=5} R$
-5 is in bucket $[1,7]$ (16)
- Assume uniform distribution within the bucket
$-|Q| \approx 16 / 7 \approx 2 \quad(|Q|=1$, actually $)$
- $Q: \sigma_{A \geq 7 \mathrm{AND} \mathrm{A} \leq 16} R$
$-[7,16]$ covers [8, 9], [10, 11], [12, 16] (all with 16)
$-[7,16]$ partially covers [1, 7] (16)
$-|Q| \approx 16 / 7+16+16+16 \approx 50(|Q|=52$, actually $)$

Histogram tricks

- Store the number of distinct values in each bucket
- To get rid of the effects of the values with 0 frequency
- These values tend to cause underestimation

- Compressed histogram

- Store (v_{i}, f_{i}) pairs explicitly if f_{i} is high
- For other values, use an equi-width or equi-height histogram

More histograms

- V-optimal histogram
- Avoid putting very different frequencies into the same bucket
- Partition in a way to minimize $\sum_{i} V A R_{i}$, where $V A R_{i}$ is the frequency variance within bucket i
- MaxDiff histogram
- Define area to be the product of the frequency of a value and its "spread" (the difference between this value and the next value with non-zero frequency)
- Insert bucket boundaries where two adjacent areas differ by large amounts
- More in Poosala et al., SIGMOD 1996

