Query Optimization

CPS 216
Advanced Database Systems

Haar wavelet coefficients

- Hierarchical decomposition structure

3

Using a wavelet-based histogram

- $Q: \sigma_{A>u \text { AND } \mathrm{A} \leq v} R$
- $|Q|=C(v)-C(u)$
- Search the tree to reconstruct $C(v)$ and $C(u)$
- Worst case: two paths, $O(\log N)$, where N is the size of the domain
- If we just store B coefficients, it becomes $O(B)$, but answers are now approximate
- What about $Q: \sigma_{A=v} R$?
- Same as $\sigma_{A>v-1 \text { AND A } \leq v} R$

Wavelets

- Mathematical tool for hierarchical decomposition of functions and signals
- Haar wavelets: recursive pair-wise averaging and differencing at different resolutions
- Simplest wavelet basis, easy to implement

Haar wavelet decomposition: $[2.75,-1.25,0.5,0,0,-1,-1,0]$

Wavelet-based histogram

- Idea: use a compact subset of wavelet coefficients to approximate the data distribution (Matias et al., SIGMOD 1998)
- The function to transform is the distribution function which maps v_{i} to f_{i}
- Steps
- Compute cumulative data distribution function $C(v)$ - $C(v)$ is the number of tuples with $R . A \leq v$
- Compute wavelet transform of C
- Coefficient thresholding: keep only the largest coefficients in absolute normalized value
- For Haar wavelets, divide coefficients at resolution j by $2^{(j / 2)} 4$

Summary of histograms

- Wavelet-based histograms are shown to work better than traditional bucket-based histograms
- The trick of using cumulative distribution for range query estimation also works for bucketbased histograms
- Trade-off: better accuracy \leftrightarrow bigger size; higher construction and maintenance costs

Cost-based query optimization

- Review
- Algorithms for physical plan operators (sorting, hashing, indexing, ...)
- Query execution techniques (buffer management, pipelining using the iterator interface...)
- Query rewrite techniques (relational algebra equivalences, unnesting, decorrelating SQL queries...)
- Cost estimation techniques (I/O analysis of algorithms, histograms...)
- Mission: searching for an "optimal" plan
- Focus on select-project-join query blocks - Join ordering is the most important subproblem

Left-deep plans

- Heuristic: consider only "left-deep" plans, wherein only the left child can be a join
- Tend to be better than plans of other shapes
- Many join algorithms scan inner (right) relation multiple times-you will not want it to be a complex subtree
- How many left-deep plans are there for $R_{1} \triangleright \triangleleft \ldots \triangleright \triangleleft R_{n}$?
- Significantly fewer, but still lots- n !
(720 for $n=6$)

Search space

- "Bushy" plan example:

- How many plans are there for $R_{1} \triangleright \triangleleft \ldots \triangleright \triangleleft R_{n}$? - Lots-close to $(n-1)!\cdot 4^{(n-1)} \quad(30240$ for $n=6)$
- There are more!
- How about multiway joins?
- How about different join methods?
- How about placement of selection and projection?

A greedy algorithm

- S_{1}, \ldots, S_{n}
- Say selections have been pushed down; i.e., $S_{i}=\sigma_{p} R_{i}$
- Start with the pair S_{i}, S_{j} with the smallest estimated size for $S_{i} \triangleright \triangleleft S_{j}$
- Repeat until no relation is left:

Pick S_{i} from the remaining relations such that the join of S_{i} and the current result yields an intermediate result of the smallest size

Query optimization in System R

- A.k.a. Selinger-style query optimization
- The classic paper on query optimization (Selinger et al., SIGMOD 1979)

- Basic ideas

- Left-deep trees only
- Bottom-up generation of plans
- Interesting orders

Bottom-up plan generation

- Observation 1: Once we have joined k relations together, the method of joining this result further with another relation is independent of the previous join methods
- Observation 2: Any subplan of an optimal plan must also be optimal (otherwise we could replace the subplan to get a better overall plan)
» Not exactly accurate (next slide)
- Bottom-up generation of optimal plans
- Compute the optimal plans for joining k relations together - Suboptimal plans are pruned
- From these plans, derive the optimal plans for joining $k+1$ relations together

Motivation for "interesting order"

Example: $R(A, B) \triangleright \triangleleft S(A, C) \triangleright \triangleleft T(A, D)$

- Best plan for $R \triangleright \triangleleft S$: hash join (beats sort-merge join)
- Best overall plan: sort-merge join R and S, and then sortmerge join with T
- Subplan of the optimal plan is not optimal!
- Why?
- The result of the sort-merge join of R and S is sorted on A
- This is an interesting order that can be exploited by later processing (e.g., join, duplicate elimination, GROUP BY, ORDER BY, etc.)!

System-R algorithm

- Pass 1: Find the best single-relation plans
- Pass 2: Find the best two-relation plans by considering each single-relation plan (from Pass 1) as the outer relation and every other relation as the inner relation ...
- Pass k : Find the best k-relation plans by considering each ($k-1$)-relation plan (from Pass $k-1$) as the outer relation and every other relation as the inner relation
- Heuristics
- Push selections and projections down
- Process cross products at the end

Dealing with interesting orders

- When picking the optimal plan
- Comparing their costs is not enough
- Plans are not totally ordered by cost anymore
- Comparing interesting orders is also needed
- Plans are now partially ordered
- Plan X is better than plan Y if
- Cost of X is lower than Y
- Interesting orders produced by X subsume those produced by Y
- Need to keep a set of optimal plans for joining every combination of k relations
- Typically one for each interesting order

Reasoning about predicates

- SELECT * FROM R, S, T

WHERE R. $A=S . A$ AND $S . A=T . A$;

- Looks like a cross product between R and T
- No join condition
- But there is really a join between R and T
- R. $A=T . A$ is implied from the other two predicates
- A good optimizer should be able to detect this case and consider the possibility of joining R with T first

16

System-R algorithm example

- SELECT SID, CID

FROM Student, Enroll, Course
WHERE Student.age < 10
AND Student.SID = Enroll.SID
AND Enroll.CID = Course.CID
AND Course.title LIKE \%data\%';

- Primary keys/indexes
- Student(SID), Enroll(CID, SID), Course(CID)
- Ordered, secondary indexes
- Student(age), Course(title)

Example: pass 1

- Plans for $\{$ Student $\}$
© - S1: Table scan, then filter (age <10); cost 100 ; result ordered by SID \leftarrow interesting order
$\boldsymbol{\bullet}-$ S2: Index scan using condition (age <10); cost 5 ; result ordered by age \leftarrow not an interesting order
- Plans for $\{$ Enroll $\}$
© - E1: Table scan; cost 1000 ; result ordered by CID, SID \leftarrow interesting order
- Plans for $\{$ Course $\}$
© - C1: Table scan, then filter (title LIKE '\%data\%'); cost 40 ; result ordered by CID \leftarrow interesting order
- C2: Index scan, then filter (title LIKE '\%data\%'); cost 160 ; result ordered by title \leftarrow not an interesting order ${ }_{18}$

Example: pass 2

- Plans for \{Student, Enroll\}
- Extending best plans for \{Student \}
- From S1: table scan, then filter (name = 'Bart')
- Block-based nested loop join with Enroll; cost 1100
- Sort Enroll by SID, and merge join; cost 3100; ordered by SID \leftarrow no longer an interesting order
- From S2: index scan using condition (name = 'Bart')
©- Block-based nested loop join with Enroll; cost 1005
- Extending best plans for $\{$ Enroll $\} \ldots .$.

Example: pass 3

- Finally, plans for \{Student, Enroll, Course\}
- Extending best plans for $\{$ Student, Enroll\}
© • (INDEX-SCAN(Student) NLJ Enroll) NLJ FILTER(Course); cost ...
-
- Extending best plans for \{Student, Course\}
- None!
- Extending best plans for \{Enroll, Course\}
- (FILTER(Course) SMJ Enroll) NLJ (INDEXSCAN(Student)); cost ...
-

Optimizer "blow-up"

- A 20-way join will easily choke an optimizer using the System-R algorithm

- Solutions

- Heuristics-based query optimization
- Randomized query optimization (Ioannidis \& Kang, SIGMOD 1990)

Example: pass 2 continued

- Plans for \{Student, Course\}
- Ignore; it is a cross product
- Plans for \{Enroll, Course\}
- Extending best plans for \{Course\}
- From C1: table scan, then filter (title LIKE '\%data\%')
© - Merge join; cost 1040
- Extending best plans for $\{$ Enroll $\}$... ...

Considering bushy plans

Straightforward generalization:

- Store all optimal 1-relation, 2-relation, ..., and k relation plans
- To find the optimal plan for $k+1$ relations
- For every possible partition of these relations into two groups, find the best ways of joining the optimal plans for the two groups
- Store the overall optimal plans

Search space revisited

Transformations

Relational algebra equivalences (or query rewrite rules in general):

- Join method choice: $R \triangleright \triangleleft_{\text {method } 1} S \rightarrow R \triangleright \triangleleft_{\text {method } 2} S$
- Join commutativity: $R \triangleright \triangleleft S \rightarrow S \triangleright \triangleleft R$
- Join associativity: $(R \triangleright \triangleleft S) \triangleright \triangleleft T \rightarrow R \triangleright \triangleleft(S \triangleright \triangleleft T)$
- Left join exchange: $(R \triangleright \triangleleft S) \triangleright \triangleleft T \rightarrow R \triangleright \triangleleft(T \triangleright \triangleleft S)$
- Right join exchange: $R \triangleright \triangleleft(S \triangleright \triangleleft T) \rightarrow S \triangleright \triangleleft(R \triangleright \triangleleft T)$
- Why the last two redundant rules?
- To avoid using the join commutativity rule, which does not change the cost of certain plans (e.g., sort-merge join) creating plateaus in the plan space

Simulated annealing

- Start with a plan and an initial temperature
- Repeat until temperature is 0 :

Repeat until some equilibrium (e.g., a fixed number of iterations):

- Move to a random neighbor of the plan (an uphill move is allowed with probability $\left.e^{-\Delta \operatorname{cost} / \text { temperature }}\right)$
- Reduce temperature
- Return the plan visited with the lowest cost

Iterative improvement

- Repeat until some stopping condition (e.g., time runs out):
- Start with a random plan
- Repeatedly go downhill (i.e., pick a neighbor with a lower cost randomly) to get to a local optimum
- Return the smallest local optimum found

Two-phase optimization

- Phase I: run iterative improvement for a while to find a good local optimum
- Phase II: run simulated annealing with a low initial temperature to get more improvements
- Why does it tend to work better than both iterative improvement and simulated annealing?

Comparison of randomized algorithms

- Iterative improvement
- Too easily trapped in a local optimum
- Too much work to restart
- Simulated annealing
- Too much time spent on high-cost plans
- Two-phase
- Phase I uses iterative improvement to get to the cup bottom quickly
- Phase II uses simulated annealing to explore the cup bottom further

