
Distributed Databases CPS 216 Advanced Database Systems

Parallel versus distributed DBMS

- · Parallel DBMS
 - Fast interconnect
 - Homogeneous hardware/software
 - Total control over components
- · Distributed DBMS
 - Geographically distributed
 - · Disconnected operations possible
 - Heterogeneous hardware/software
 - · Performance, data formats, data processing capabilities
 - Autonomy of individual sites

Distributed DBMS issues

- Database management with multiple sites that are possibly autonomous and heterogeneous
 - Data organization
 - Query processing and optimization
 - Concurrency control and recovery

4

Data organization

- · Top-down approach
 - Have a database
 - How to partition and/or replicate it across sites
- Bottom-up approach
 - Have existing databases at different sites
 - How to integrate them together and deal with heterogeneity and autonomy
- · Focus for today
 - Data partitioning using a top-down approach

Partitioning schemes

• Horizontal $\begin{pmatrix} A_1 & A_2 & A_3 & A_4 & & & \\ & A_1 & A_2 & A_3 & A_4 & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$

Horizontal partitioning schemes

- · Round-robin partitioning
- Hash partitioning
- Range partitioning
- · Predicate-based partitioning
- · Derived horizontal partitioning

7

Properties of a correct partitioning

$$R \rightarrow \{ R_1, R_2, ..., R_k \}$$

- Completeness and reconstructability $R = R_1 \cup R_2 \cup ... \cup R_k$
- Disjointness

 $R_i \cap R_j = \emptyset$ for any $i \neq j$

Round-robin partitioning

<u>R</u>	R_0 R_1 R_2
t_1	t_1
t_2	t_2
t_3	t_3
t_4	t_4

- · Evenly distributes data
- · Good for full relation scans
- · Not good for range queries

Hash partitioning

R		$R_0 R$	R_2
t_1	$hash(k_1) = 2$		t_1
t_2	$ hash(k_2) = 0 $	t_2	
t_3	$hash(k_3) = 0$	t_3	
t_4	$hash(k_4) = 1$	t_4	

- Evenly distributes data (assuming a good hash function)
- Good for point queries and equijoins on the partitioning attribute
- · Not good for range queries

Range partitioning

- · Good for range queries on the partitioning attribute
- The choice of partitioning vector is important
 - Bad vector may result in both data skew and execution skew

Predicate-based partitioning

- Fragmentation
 - Decide how to divide a relation horizontally into fragments using a set of predicates
- Allocation
 - Decide which fragments go to which site

12

Predicate-based fragmentation

- Given a relation R and a set of simple predicates $P = \{ p_1, p_2, ..., p_n \}$
- Generate minterm predicates
 - $-M = \{ m \mid m = \bigwedge_{(1 \le k \le n)} p_k^* \}, \text{ where } p_k^* \text{ is either } p_k$ or $\neg p_k$
 - Simplify minterms in M and eliminate useless ones
- For each m in M, generate a fragment $\sigma_m R$

13

Example

- Say queries use simple predicates: A < 10, A > 5, $D = {}^{\circ}CS^{\circ}$, $D = {}^{\circ}EE^{\circ}$
- Generate, simplify, and eliminate minterms $A < 10 \land A > 5 \land D = {}^{\circ}\text{CS'} \land D = {}^{\circ}\text{EE}^{2}$ eliminated $A < 10 \land A \le 5 \land D = {}^{\circ}\text{CS'} \land D \ne {}^{\circ}\text{EE}^{2}$ $A \le 5 \land D = {}^{\circ}\text{CS'}$
- · Final set of fragments

 $\begin{aligned} \sigma_{5 < A < 10 \land D} &= \text{'CS'} R \\ \sigma_{A \le 5 \land D} &= \text{'CS'} R \\ \sigma_{A \ge 10 \land D} &= \text{'CS'} R \end{aligned} \qquad \begin{aligned} \sigma_{5 < A < 10 \land D} &= \text{'EE'} R \\ \sigma_{A \ge 10 \land D} &= \text{'CS'} R \\ \sigma_{A \ge 10 \land D} &= \text{'EE'} R \end{aligned}$

14

Choice of simple predicates

- Completeness
 - There is an equal probability of access by every application to any two tuples in the same minterm fragment
 - If p is used in fragmentation, then $\sigma_p R$ either accesses all tuples in a fragment or none in a fragment
- Minimality
 - If a predicate causes a fragment f to be further fragmented into f_i and f_j , there should at least one application that accesses f_i and f_j differently
- » Use all relevant predicates in frequent queries!

Allocation of fragments

- · Tough optimization problem
 - Do we replicate fragments?
 - Where we place each copy of each fragment?
- Metrics: minimize query response time; maximize throughput; minimize network traffic; ...
- Constraints: available storage, bandwidth, processing power; response time requirement; ...
- Issues: origin of queries; selectivity of fragments; query processing strategies; consistency enforcement; ...

16