Distributed Databases

CPS 216
Advanced Database Systems

Centralized versus distributed DBMS

Centralized

Processor

]
5] .]
Distributed
]]

Memory

Memory

Parallel versus distributed DBMS

* Parallel DBMS
— Fast interconnect
— Homogeneous hardware/software
— Total control over components
* Distributed DBMS
— Geographically distributed
« Disconnected operations possible
— Heterogeneous hardware/software
« Performance, data formats, data processing capabilities

— Autonomy of individual sites 3

Distributed DBMS issues

 Database management with multiple sites that are
possibly autonomous and heterogeneous
— Data organization
— Query processing and optimization
— Concurrency control and recovery

Data organization

* Top-down approach

— Have a database

— How to partition and/or replicate it across sites
* Bottom-up approach

— Have existing databases at different sites

— How to integrate them together and deal with
heterogeneity and autonomy

* Focus for today

— Data partitioning using a top-down approach

A A, A, 4,
* Horizontal Site 1
2
X Site 2
Iy
Site k
A A, A, 4,

¢ Vertical f

e Or hybrid Site 1 Site 2 Site k

Partitioning schemes

Horizontal partitioning schemes

* Round-robin partitioning

* Hash partitioning

» Range partitioning

* Predicate-based partitioning

* Derived horizontal partitioning

Properties of a correct partitioning

R—{R,R), ...R, }

» Completeness and reconstructability
R=R,0OR,0..0R,

* Disjointness
R,n R;=0 foranyi#j

Round-robin partitioning

R R,__R,__R,
4)

2} 2}

2] 4

 Evenly distributes data
* Good for full relation scans
» Not good for range queries

Hash partitioning
R R, R__R,
t hash(k)) =2 t
t, hash(ky) =0 f
1 hash(k;) =0 1
t, hash(k) =1 o

» Evenly distributes data (assuming a good hash function)

* Good for point queries and equijoins on the partitioning
attribute

» Not good for range queries 10

Range partitioning
R partitioning vector: <4,7> R, R, R,
% k=5 B
t k=8 t
4 ky=2 t
£y k=3 7

* Good for range queries on the partitioning attribute
* The choice of partitioning vector is important

— Bad vector may result in both data skew and execution skew

1

Predicate-based partitioning

» Fragmentation

— Decide how to divide a relation horizontally into
fragments using a set of predicates

¢ Allocation

— Decide which fragments go to which site

Predicate-based fragmentation

 Given a relation R and a set of simple predicates
pP= {p17p2: o0 Py }
 Generate minterm predicates
—M={m|[m=04_4c,np*}, wherep*is either p;
or =Py
— Simplify minterms in M and eliminate useless ones

* For each m in M, generate a fragment o,, R

Example

* Say queries use simple predicates:
A<10,4>5,D="CS’,D="EE’

* Generate, simplify, and eliminate minterms
A<+0-HA>5-H-P—2E5-H-H—2FF3 eliminated
A<HHA<SHP=—CSHD+EB A<50D="CS

* Final set of fragments
Os<q<inp="cs® Os<y<i0op=-epR
Og<sop-cs R O <sop-ep R
O4>100p="cs R G4>100p="t6 R

Choice of simple predicates

» Completeness

— There is an equal probability of access by every
application to any two tuples in the same minterm
fragment

* If p is used in fragmentation, then o,R either accesses all
tuples in a fragment or none in a fragment
e Minimality

— If a predicate causes a fragment f'to be further
fragmented into f; and f, there should at least one
application that accesses f; and f; differently

» Use all relevant predicates in frequent queries!

15

Allocation of fragments

» Tough optimization problem
— Do we replicate fragments?
— Where we place each copy of each fragment?
* Metrics: minimize query response time; maximize
throughput; minimize network traffic; ...
+ Constraints: available storage, bandwidth, processing
power; response time requirement; ...
« Issues: origin of queries; selectivity of fragments; query
processing strategies; consistency enforcement; ...

