Distributed Databases

CPS216
Advanced Database Systems

Review

Top-down approach to distributed DBMS
« Data partitioning techniques
—Horizontal partitioning
 Round-robin, hash, range, predicate-based
« Derived horizontal partitioning
—Vertica partitioning
* Query processing and optimization techniques
 Concurrency control and recovery

Derived horizontal partitioning (siide 1)

Example
« Relations
— Student(SID, name, dept, ...)
— Department(dept, name, schoal, ...)
« Common query: Student [][[Department
« Department is partitioned according to school
~— Ssthool =’ Art & Science' Dmm
— Sschool = Engineering’ Department

* How do we partition Student?

Derived horizontal partitioning (side 2)

* If R(owner relation e.g., Department) is
partitioned into:
Rlv sz ooog R’l

» Then S(member relation e.g., Student) should be
partitioned into Sinto:

S[?R, SI?R, ..., SI?R,

* Recdl the definition of semijoin:
SU?R = Paugs(SULU R)

Derived horizontal partitioning (side 3)

» Completeness and reconstructability
—-S=(SO?R) ? (SO?Ry) ? ...? (SI?R)?
—Every Stuple must join with some R tuple

* Digointness
—(SO?R)? (SI?R)=Bforanyi?j?

— Every Stuple can only join with one R tuple
—Note: not a precise requirement

» SO0 Risaforeign key join (Sreferences R)

— Example: Student.dept references Department.dept
5

Verticd partitioning

R? {panrs(Rl)R panrs(Rz)R e paltrs(Rk)R}
atrs(R) =attrqR,) ? dtrs(Ry) ? ... ? attrs(R)
atrs(R) ? atrs(R) = key(R) for any i ? |

» Completeness and reconstruction
-R=R,00R,00 ...00 R,
* Digointness
—attrs(R) ? attrs(R) = key(R) for any i ?]
» Just like

Attribute affinity matrix

A A A A
A4 0 45 0

A, |0 8 5 75
A, |45 5 53 3
A,lO0O 75 3 78

K

* A;: ameasure of how “often” A and A are
accessed by the same query

Partitioning according to AAM
* Cluster attributes based on affinity

AP LA A
45 45 |0 0
45 5315 3
5 80 75
0 3 75 78

J>> r\?ub H>
o

Query rewrite for partitions

» Start with aquery plan

* Replace relations by partitions/fragments

e Push? andJ0 up, s and p down

» Simplify and eliminate unnecessary operations

Query rewrite example:
Primary horizontal partitioning

jj”m I = N
SA<10R}:10R ﬁA:S ﬁAzg

Another query rewrite example:
Primary horizontal partitioning
s = Trnmsa
R P Y N

SA<lOR S/—\ZlOR ,’-\<SSSA:5S

/BB\R*%SA /BDMSA
Sa<10R SacsS Sa=10R Sacs

D?zy\:SA S/BD}C\%SA

Spc1oR Sp-sS Sa=10R SAi5S

Query rewrite example:
Derived horizontal partitioning
B
R S PN p
SacR SapR SU?R, SO7R,
_®
IR sa ~O0R% sa

R SD?/R‘ED%S;Z SU?Re
R, SI?R R SU?R

Query rewrite example:
Vertical partitioning

FfAB AB AB
oo %
Pkaco R Pcee R Pee R pKﬁC p'TB Pke R
Peaco R Pree R

Execution partitioning

« Datapartitioned at different sites
* Result wanted at possibly another site

» Where do query operators execute?

—Approach 1: operators remain local to sites; add

send/receive operators to ship intermediate results
between sites

* Inter-operator parallelism

—Approach 2: redesign operators to exploit intra-
operator parallelism

Send/receive operators
)Vanted a Site :I\

MERGE-JOIN
Site2 SCAN(R) soRT

Sitel

seND
MERGEIOH
ﬁEEEﬁ“Ej sokt |Ste3
selD | SCANGS
SCAN(R)

Site2

1o

Parallel/distributed query operators

* Sort
—Parallel range-partitioning sort
—Paralel merge sort

 Join
— Partitioning join
—Asymmetric fragment and replicate join
— Genera fragment and replicate join
— Semijoin reducers

Range-partitioning sort

 Range partition Ron the sort key A, and then sort
each partition locally at destination sites

Globd Local
artitionin sort
I Ry »| Rl
R, (sorted)
T
R
W R > Bk Result
R, v
Ry
LR s
17
Merge sort

« Sort Rlocally a source sites, range partition the
sorted results and merge them at destination sites

Globa
L;Crf‘ partitioning
nd e R
R R, 7 (sorted)
(sorted) A
] Rm) Result
(sort
n LR v
(sorted) i

Selecting a partitioning vector

Possible centralized approach using a coordinator
« Each site sends statistics about its partition to
coordinator

— Could be (low, high, number of tuples), or even a
histogram
» Coordinator computes and distributes partitioning
vector
— Could be a vector that equally partitions the relation
* Multiple rounds of refinement possible

Partitioning join
* Partition both Rand Saccording to join key, and
then join corresponding partitions locally
| ocal jain

R S
R, v S

LR, [S,

Global LFe I L8 Ugiopa
partitioning partitioning

More on partitioning join

 Same partition function for both Rand S
— Can be either range or hash partitioning
 Equijoinswork best
Any type of loca join algorithm can be used
* Severa possible variants, e.g.
— Partition R, partition S; join
—Partition R and build a hash table for R, partition S
and join

Asymmetric fragment & replicatejoin

* Partition R replicate S, and then join each
partition of Rwith areplicaof Slocaly

Locd join
R, B > 5
N R, J 5
R S
Globa 3R S K Global
partitioning I-:{?@J_I; union/replication

22

Genera fragment & replicatejoin

¢ Supposem? n sites participate in join

¢ PatitionRiNtoR, R, ..., R,

e PatitionSinto §, S, ..., §

» Each sitereceives acopy of R, and acopy of § and joins
them locally
— Each R needsto be replicated n times
— Each § needsto be replicated mtimes

R-RsrRe—— R-

i

:Sq 23
Semijoin reducer

R(A,B)00 SA O
Sitel Site2
« Naivestrategy: shipR Site 2 and join it there with S
¢ Problem
— All Rtuples are shipped, but few actually join
— Lots of bandwidth wasted in sending useless Rtuples!
¢ ldea
—ROO S =(RO? 900 S=RIO (SI? R
=(RO? 900 (SI? R
— Use semijoins to reduce the number of tuples that need to be
shipped to join at another site

4

Semijoin reducer in action

R(A,B) 00 SA O
Sitel Site2

Site 2 computes p,S and sendsiit to Site 1
« Site 1 computes R[1? S= RO paSand sendsit to Site 2
¢ Site2 computes R0 S=(RO? 900 S

¢ Communication costs
— Naive: sizeof(R)
— Semijoin: sizeof(p,S) +sizeof (RO? S)
— Greater savingsif thereisalocal selectionon S

Semijoin reducer tricks

* Encode p,Sasabitmap
—One bit for each possible vaue in the domain of A
—What if the domain istoo big? What if we only want

to send n bits?

* Encode p,Sas a bloomfilter of n bits
—Hash each SA valueto an offset fromOto n—1
—Bloom-filer is lossy and may generate false positives

* Example: a? p,S b ? p,S hash(a) = hash(b) = 1; Rtuples
with value b are sent to S—unnecessary but harmless

— Similar to the idea of signature files

Full reducer

R,000..00MR,

* R isreducedif R = pyygr)(Ry DO0.. 00 R)
* A seriesof semijoinsis called a full reducer if every R is
reduced after executing the semijoins
— That is, thereare no dangling tuple at all!
¢ Full reducer for R(A, B) U0 §B, C) U0 T(C, D)
-S? SO?R
-T? TO?B
-S? S0??
-R? RO?B
« Full reducer for R(A, B) 01 §B, C) 0[] T(C, A)

=NNanel

Join hypergraph

RA B)00 §B,C)00T(C,D) R(A B0 §B,)00 T(C, A)

¢ A nodeis an attribute; matching join attributes share the
same node

« A hyperedge connects attributes from the same relation
For hyperedgesE and F, if the attributesin E—F are
unique to E (not in any other hyperedge), then E isan ear
A join hypergraph is acydic if we can continue
removing ears until there is nothing left

— That is, the graph isreally atree (think of ears asleaves) e

Full reducer for acyclic hypergraph

» Theorem: A join has afull reducer iff thejoin
hypergraph is acyclic
« Algorithm
—Remove an ear R; say it hangs off S
—S? SO?R« Sisreducedw.rt. R
— Generate afull reducer foere remaining hypergraph

—R? RI?8 Other relations are reduced
4 w.r.t. Rthrough S;
Now Risreducedwrt. S and ~ SiSfurther reduced
w.r.t. other relationsthrough s W-r-t- other relations

Next time

* Optimizing distributed queries
« Concurrency control and recovery

* Bottom-up approach to building a distributed
database

» Datawarehousing

10

