Distributed Databases

CPS216
Advanced Database Systems

Review

Top-down approach to distributed DBMS
« Data partiti oning techniques
— Horizontal partitioning
* Roundrobin, hash, range, predicate-based
« Derived horizontal partitioning
— Vertical partitioning
¢ Query processng and optimization techniques
« Concurrency control and recovery

Derived horizontal partitioning (side 1)

Example
* Relations
— Student(SID, name, dept, ...)
— Department(dept, name, schoal, ...)
e Common guery: Student >< Department
» Department is partitioned according to school
— 'S sthod ="Art & science DEPAItMENt
— S shod = "Engineaing Department
* How dowe partition Student?
— Same partitioning scheme as Department

Derived horizontal partitioning (side 2)

« If R (owner relation, e.g., Department) is
partitioned into:
R, R, ..., R,

* Then S(member relation, e.g., Student) should be
partitioned into Sinto:
S><R, Sp<R, ..., S><R,

« Recall the definition of semijoin:
SP<R =P augs(S><R)

Derived horizontal partitioning (side 3)

« Completenessand reconstructabilit y
—-S=(Sp<R) 0O(Sr<R) O ...0O(Sr<R)?
— Every Stuple must join with some R tuple
« Digjointness
—(S><R) n (S»<R)=@foranyi? j?
— Every Stuple can only join with one R tuple
— Note: not apredse requirement
» S>< Risaforeign key join (Sreferences R)
— Example: Student.dept references Department.dept
5

Vertical partitioning

R? {p attrs(Rl)R’ p attrs(RZ)R’ Y attrs(Rk)R}
attrs(R) = attrs(Ry) O attrs(R,) O ... O attrs(R)
atrs(R) n attrg(R) = key(R) forany i ? |

« Completenessand reconstruction
-R=R;><R,><...><R,

« Digjointness
—dtrs(R) n attrg(R) = key(R) forany i ? |

» Just like losdessjoin decomposition and DSM6

Attribute affinity matrix

| Al A2 AS A4
A |45 0 45 0
Al0 8 5 75
Al 45 5 53 3
Alo 75 3 78

* A;: ameasure of how “often” A and A are

accessd by the same query

Partitioning according to AAM

 Cluster attributes based on affinity

Al A3 A2 A4
A |45 450 0
Al 45 53|5 3
A0 5 [80 75
A0 3 |75 78

Query rewrite for partitions

Start with aquery plan

Replace relations by partiti ons/fragments

Push 0 and><up, s and p down

Simplify and eliminate unnecessary operations

Query rewrite example:
Primary horizontal partitioning

Sa=3 Sa=3
R = I = /]\
RSY. R 172
@h A= 10 S ac1oR S 2 R
A “free” operator ﬂ

by partitioning scheme;
not part of the query plan! S aA=3
I
S a<10R

10

Anather query rewrite example:
Primary horizontal partitioning

ARG N

S a<10R S a- 10RS A<55S A-5S

N
SA<10RSA<5S S A 10RS

l><1ASA ‘><‘A3A
K

Sa<10R SA-5S S a= lORSA 59

Query rewrite example:
Derived horizonta partitioning

= /D/\

sA<10RsA 10R SB<R, Sp<R,

R) (R) [l acumng
. a(\D\SArderenc% RA
A= A=SA
Rl/ \ékb< R, R}ﬁ< R1[><1
2 JrA=sA o jeEsA
R <R, R, SD: R,

Query rewrite example:
Vertical partitioning

F|)AB = Fl’AB oy ll)AB
>4 >
R 1N PR
P kaco RP kge RP ke R prAC leB%

P kaco R P kee

Execution partitioning

 Data partitioned at different sites
¢ Result wanted at possbly another site
¢ Where do query operators execute?

— Approach 1: operators remain locd to sites; add
send/receive operators to ship intermediate results
between sites

* Inter-operator parallelism

— Approach 2 redesign operators to exploit intra-

operator parall elism

Send/receive operators

Wanted at Site 1
MERGE-JOIN
Site2 SCAN(R) SORT

SCAN(S Site3
Site1l
MERGE-JOIN

Site1 RECEIVE
SEfI\ID
MERGE-JOIN

— T~
RECEIVE RECEIVE
SEND SEND

| | =" T Site 3
SCAN(R)| | sorT RECEIVE SORT
: I SEND SCAN(S)
62
=15 SCAN(S| site2| |
Site 3 SCAN(R) 15

Parall el/distributed query operators

» Sort
— Parallel range-partitioning sort
— Parallel merge sort
« Join
— Partitioning join
— Asymmetric fragment and replicate join
— General fragment and replicatejoin
— Semijoin reducers

Range-partitioning sort

» Range partition R onthe sort key A, and then sort
each partition locadly at destination sites

Global Local
partitioning sort
R, Ry
Ra sorted)
Vi
R, R | % Result
(sorted)
R Vo
R, R
sorted)

Merge sort

« Sort Rlocdly at source sites, range partition the

sorted results and merge them at destination sites
Local Global

sort

partitioning

Result

Selecting a partitioning vedor

Possble centrali zed approach using a wordinator

¢ Each site sends datistics about its partition to
coordinator

— Could be (low, high, number of tuples), or even a
histogram

 Coordinator computes and distributes partitioning
vedor

— Could be avedor that equally partitions the relation
¢ Multiple rounds of refinement possble

Partitioning join
« Partition both R and Saccordingto join key, and
then join corresponding partitions locally

Local join
R, T S
Ra S
R, T S,
Ry S
Globa™>] Fe T 1> FGloba
partitioning Ee'sjﬁ partitioning

More on partitioning join

¢ Same partition function for both Rand S
— Can be ather range or hash pertitioning
Equijoins work best
« Any type of local join agorithm can be used
* Severda posshlevariants, e.qg.

— Partition R; partition S; join

— Partition Rand buld ahash table for R; partition S
and join

Asymmetric fragment & replicae join

 Partition R, replicate S and then join each
partition o Rwith areplicaof Slocally

Local join
R, T S
R Non-equijoins S
work just fine]
R, T S
R S
Globa™>] Fe T 1 5 FGloba
partitioning — union/replicaion

Even round-robin will do! Result Works best if Sissmall 2

General fragment & replicate join

Suppose m x n sites participate in join
PartitionRinto Ry, Ry, ..., R,
PartitionSinto S, S,, ..., S,
Each stereceivesa mpy of R anda wpy of § andjoins
them locally
— Each R needsto bereplicaed ntimes
— Each § needs to be replicated mtimes

R RRR ... R, Eachsitehandles
S / ablock
. 41

5 »

Semijoin reducer

R(A, B) >« S(A, C)
Sitel Site2

» Nalve strategy: ship R Site 2 andjoin it there with S
e Problem

— All Rtuples are shipped, but few acually join
— Lots of bandwidth wasted in sending uselessR tuples!

¢ |ldea

- RpaS =(Rp<9><aS=Rp><(Sr<R)
=(Rp<9 >a(Sr<R)
— Use semijoins to reduce the number of tuples that need to be
shipped to join at another site

24

Semijoin reducer in action

R(A, B) >« §(A, C)
Sitel Site 2
» Site 2 computesp ,Sand sendsit to Site 1

* Sitel computesR>< S=R>< p ,Sand sendsit to Site
2

e Site2 computesR>< S=(R><9§ >« S

¢ Communication costs
— Naive: sizeof(R)
— Semijoin: sizeof(p oS + sizeof(R><)
— Greater savingsif thereisalocal seledionon S 2

Semijoin reducer tricks

» Encode p ,Sasabitmap
— One hit for each possble value in the domain of A
— What if the domain istoo big? What if we only want
to send n bits?
» Encode p ,Sas abloom-filter of n bits
— Hash each SA valueto an offset fromOton— 1
— Bloom-filer islossy and may generate false positives

* Example: a0 p oS b O p 4S hash(a) = hash(b) = 1; R
tuples with value b are sent to S—unnecessary but harmless

— Similar to the idea of signature files

26

Full reducer

Ri><...>< R,
* Risreducedif R =p yqr)(Ri>< ... >R
* A seriesof semijoinsiscdled afull reducer if every R is
reduced after exeauting the semijoins
— That is, there are no dangling tuple at all!
« Full reducer for R(A, B) >< §B, C) >« T(C, D)
- S? Se<R
-T? Te<S
-S?Se<T
- R? Rp<S
« Full reducer for R(A, B) >« §B, C) >« T(C, A)
— None! 27

Join hypergraph

RA B)>< SB,C) >« T(C,D) R(A B) b« B, C) >« T(C, A

G XS Y

A nodeis an attribute; matching join attributes share the
same node

A hyperedge mnneds attributes from the same relation
For hyperedges E and F, if the atributesin E—F are
unique to E (not in any ather hyperedge), then E isan ear
A join hypergraphis acyclic if we @n continue
removing eas until there is nothing left

— That is, the graphisreally atree(think of ears asleaves)

28

Full reducer for acyclic hypergraph

« Theorem: A join has afull reducer iff thejoin
hypergraphis acyclic
e Algorithm
— Remove an ear R; say it hangs off S
—S? S><R «—Sisreduced w.r.t. R
— Generate afull reducer for the remaining hypergraph

—R? Rp<S Other relations are reduced
w.r.t. Rthrough S
Now Risreduced w.rt. S and Sisfurther reduced
w.rt. other relationsthrough s W-r-t. other relations

Next time

Optimizing distributed queries
Concurrency control and recovery

 Bottom-up approach to buil ding a distributed
database

e Datawarehousing

