
1

Distributed Databases

CPS 216

Advanced Database Systems

2

Review

Top-down approach to distributed DBMS

• Data partitioning techniques
– Horizontal partitioning

• Round-robin, hash, range, predicate-based

• Derived horizontal partitioning

– Vertical partitioning

• Query processing and optimization techniques

• Concurrency control and recovery

3

Derived horizontal partitioning (slide 1)

Example
• Relations

– Student(SID, name, dept, …)
– Department(dept, name, school, …)

• Common query: Student ��� Department
• Department is partitioned according to school

– s school = ’Art & Science’ Department
– s school = ’Engineering’ Department
– …

• How do we partition Student?
– Same partitioning scheme as Department

4

Derived horizontal partitioning (slide 2)

• If R (owner relation, e.g., Department) is
partitioned into:
R1, R2, …, Rn

• Then S (member relation, e.g., Student) should be
partitioned into S into:
S � < R1, S � < R2, …, S � < Rn

• Recall the definition of semijoin:
S � < Ri = p attrs(S)(S ��� Ri)

5

Derived horizontal partitioning (slide 3)

• Completeness and reconstructabilit y
– S = (S � < R1) ∪ (S � < R2) ∪ … ∪ (S � < Rn)?

– Every S tuple must join with some R tuple

• Disjointness
– (S � < Ri) ∩ (S � < Rj) = Ø for any i ? j?

– Every S tuple can only join with one R tuple

– Note: not a precise requirement

» S ��� R is a foreign key join (S references R)
– Example: Student.dept references Department.dept

6

Vertical partitioning

R ? { p attrs(R1)R, p attrs(R2)R, …, p attrs(Rk)R }
attrs(R) = attrs(R1) ∪ attrs(R2) ∪ … ∪ attrs(Rk)

attrs(Ri) ∩ attrs(Rj) = key(R) for any i ? j

• Completeness and reconstruction
– R = R1 �
	 R2 ��	 … ��	 Rn

• Disjointness
– attrs(Ri) ∩ attrs(Rj) = key(R) for any i ? j

» Just like lossless-join decomposition and DSM

2

7

Attribute affinity matrix

A1 A2 A3 A4

A1 45 0 45 0
A2 0 80 5 75
A3 45 5 53 3
A4 0 75 3 78

• Aij: a measure of how “often” Ai and Aj are
accessed by the same query

8

Partitioning according to AAM

• Cluster attributes based on affinity

A1 A3 A2 A4

A1 45 45 0 0
A3 45 53 5 3
A2 0 5 80 75
A4 0 3 75 78

9

Query rewrite for partitions

• Start with a query plan

• Replace relations by partitions/fragments

• Push ∪ and ��� up, s and p down

• Simpli fy and eliminate unnecessary operations

10

Query rewrite example:

Primary horizontal partitioning
s A = 3

R

s A = 3

s A < 10 R s A = 10 R

∪

s A < 10 R s A = 10 R

∪

s A = 3 s A = 3

A “ free” operator
by partitioning scheme;

not part of the query plan!

s A < 10 R

s A = 3

11

Another query rewrite example:

 Primary horizontal partitioning
���

R.A = S.A

R S

���

R.A = S.A

s A < 10 R s A = 10 R

∪
s A < 5 S s A = 5 S

∪

s A < 10 R s A < 5 S

s A < 10 R s A = 5 S

���

R.A = S.A

���

R.A = S.A

s A = 10 Rs A < 5 S

s A = 10 R s A = 5 S

���

R.A = S.A

���

R.A = S.A

∪

12

Query rewrite example:

Derived horizontal partitioning
���

R.A = S.A

R S

���

R.A = S.A

∪ ∪
S � < R1 S � < R2s A < 10 R

(R1)
s A = 10 R

(R2)

R1

���

R.A = S.A

���

R.A = S.A

���

R.A = S.A

���

R.A = S.A

∪

S � < R1

S � < R2
S � < R2

S � < R1R2

R2R1

Assuming
S.A references R.A

3

13

Query rewrite example:

Vertical partitioning
p AB

R

p KACD R

p AB
���

K

p KBE R p KF R

p KACD R

p AB
���

K

p KBE R

p KF Rp KAC p KB

14

Execution partitioning

• Data partitioned at different sites

• Result wanted at possibly another site

• Where do query operators execute?
– Approach 1: operators remain local to sites; add

send/receive operators to ship intermediate results
between sites

• Inter-operator parallelism

– Approach 2: redesign operators to exploit intra-
operator parallelism

15

Send/receive operators

MERGE-JOIN

SCAN(R)

SCAN(S)

SORT
Site 2

Site 3

SEND

RECEIVE

SEND

RECEIVE

Site 1

MERGE-JOIN
SCAN(R)

SCAN(S)

SORTSite 2

Site 3

Wanted at Site 1

MERGE-JOIN

SCAN(R)

SCAN(S)

SORT

Site 2

Site 3

SEND

RECEIVE

SEND

RECEIVESite 1

16

Parallel/distributed query operators

• Sort
– Parallel range-partitioning sort

– Parallel merge sort

• Join
– Partitioning join

– Asymmetric fragment and replicate join

– General fragment and replicate join

– Semijoin reducers

17

Range-partitioning sort

• Range partition R on the sort key A, and then sort
each partition locally at destination sites

Rb

Ra

R1

R2

R3

R1
(sorted)

R2
(sorted)

R3
(sorted)

Local
sort

Global
partitioning

v2

v1

Result

18

Merge sort

• Sort R locally at source sites, range partition the
sorted results and merge them at destination sites

Rb
(sorted)

Ra
(sorted)

R1
(sorted)

R2
(sorted)

R3
(sorted)

Local
sort

Global
partitioning
and merge

v2

v1

Result

Rb

Ra

4

19

Selecting a partitioning vector

Possible centralized approach using a coordinator

• Each site sends statistics about its partition to
coordinator
– Could be (low, high, number of tuples), or even a

histogram

• Coordinator computes and distributes partitioning
vector
– Could be a vector that equally partitions the relation

• Multiple rounds of refinement possible
20

Partitioning join

• Partition both R and S according to join key, and
then join corresponding partitions locally

Rb

Ra

R1

R2

R3

Sb

Sa

S1

S2

S3

Local join

Global
partitioning

Result

Global
partitioning

21

More on partitioning join

• Same partition function for both R and S
– Can be either range or hash partitioning

• Equijoins work best

• Any type of local join algorithm can be used

• Several possible variants, e.g.
– Partition R; partition S; join

– Partition R and build a hash table for R; partition S
and join

22

Asymmetric fragment & replicate join

• Partition R, replicate S, and then join each
partition of R with a replica of S locally

Rb

Ra

R1

R2

R3

Sb

Sa

S

S

S

Local join

Global
partitioning

Result

Global
union/replication

Even round-robin will do!

Non-equijoins
work just fine!

Works best if S is small

23

General fragment & replicate join

• Suppose m × n sites participate in join

• Partition R into R1, R2, …, Rm

• Partition S into S1, S2, …, Sn

• Each site receives a copy of Ri and a copy of Sj and joins
them locally
– Each Ri needs to be replicated n times

– Each Sj needs to be replicated m times
R1

S1

Sn

R2 R3 Rm… …

…
 …

Each site handles
a block

24

Semijoin reducer

R(A, B) ��� S(A, C)
Site 1 Site 2

• Naïve strategy: ship R Site 2 and join it there with S

• Problem
– All R tuples are shipped, but few actually join

– Lots of bandwidth wasted in sending useless R tuples!

• Idea
– R ��� S = (R � < S) ��� S = R ��� (S � < R)

= (R � < S) ��� (S � < R)

– Use semijoins to reduce the number of tuples that need to be
shipped to join at another site

5

25

Semijoin reducer in action

R(A, B) ��� S(A, C)
Site 1 Site 2

• Site 2 computes p AS and sends it to Site 1

• Site 1 computes R � < S = R ��� p AS and sends it to Site
2

• Site 2 computes R ��� S = (R � < S) ��� S

• Communication costs
– Naïve: sizeof(R)

– Semijoin: sizeof(p AS) + sizeof(R � < S)

– Greater savings if there is a local selection on S 26

Semijoin reducer tricks

• Encode p AS as a bitmap
– One bit for each possible value in the domain of A

– What if the domain is too big? What if we only want
to send n bits?

• Encode p AS as a bloom-filter of n bits
– Hash each S.A value to an offset from 0 to n – 1

– Bloom-filer is lossy and may generate false positives
• Example: a ∈ p AS, b ∉ p AS, hash(a) = hash(b) = 1; R

tuples with value b are sent to S—unnecessary but harmless

– Similar to the idea of signature files

27

Full reducer

R1
��� … ��� Rn

• Ri is reduced if Ri = p attrs(Ri)(R1
��� … ��� Rn)

• A series of semijoins is called a full reducer if every Ri is
reduced after executing the semijoins
– That is, there are no dangling tuple at all!

• Full reducer for R(A, B) ��� S(B, C) ��� T(C, D)
– S ? S � < R
– T ? T � < S
– S ? S � < Τ
– R ? R � < S

• Full reducer for R(A, B) ��� S(B, C) ��� T(C, A)
– None! 28

Join hypergraph

• A node is an attribute; matching join attributes share the
same node

• A hyperedge connects attributes from the same relation
• For hyperedges E and F, if the attributes in E – F are

unique to E (not in any other hyperedge), then E is an ear
• A join hypergraph is acyclic if we can continue

removing ears until there is nothing left
– That is, the graph is really a tree (think of ears as leaves)

A
B

C

R(A, B) ��� S(B, C) ��� T(C, D) R(A, B) ��� S(B, C) ��� T(C, A)

D A B

C

29

Full reducer for acyclic hypergraph

• Theorem: A join has a full reducer iff the join
hypergraph is acyclic

• Algorithm
– Remove an ear R; say it hangs off S

– S ? S � < R
– Generate a full reducer for the remaining hypergraph

– R ? R � < S

S is reduced w.r.t. R

Other relations are reduced
w.r.t. R through S;
S is further reduced
w.r.t. other relations

Now R is reduced w.r.t. S, and
w.r.t. other relations through S

30

Next time

• Optimizing distributed queries

• Concurrency control and recovery

• Bottom-up approach to building a distributed
database

• Data warehousing

