
1

Distributed Databases
Data Warehousing

CPS 216
Advanced Database Systems

2

Review
Distributed DBMS
• Top-down approach

– Data partitioning
– Query processing
– Query optimization
– Concurrency control and recovery

• Bottom-up approach
– Query processing and optimization

3

Optimizing distributed queries
What is different from optimizing centralized queries?
• New strategies: parallel joins, semijoins, …
• Plans have a new property: “interesting sites”
• Communication cost is a big factor besides I/O

– Per-message cost, per-byte cost, CPU cost to pack/unpack data
• Parallelism: response time versus total resource

consumption

100 40
70

50

Plan A
Plan B

2

4

Example: two-step optimization
• Step 1 (compile time): decide the join order, join

methods, and access paths
– Same complexity as in a centralized DBMS

• Step 2 (run time): decide where to execute each operator
– Can cope with changing load and network characteristics
– Can use data that has been dynamically allocated to a site

(caching or replication)

ba

ba ba

R2R1 R3 R4

Step 1: ba

ba ba

R2R1 R3 R4

Site 2

Site 1 Site 1

Step 2: ba

ba ba

R4R1 R2 R3

Site 2

Site 1
Better:

5

Concurrency control & recovery in
Distributed DBMS

• Rich and interesting field
• We will just sample the field by looking at the

problem of distributed transaction commit

Site 1 Site 2 Site 3

Transaction T
op1; op2 op3 op3; op4

abortcommit commit

6

Two-phase commit

Initial

Wait Abort

Commit

Initial

Ready

Coordinator Participant

T.commit
prepare* NOK

abort*
Abort

Commit

OK*
commit*

prepare
OK

prepare
NOK

commit
-

abort
-

Notation: Incoming message * = everyone
Outgoing message

3

7

Key points of 2PC
• By sending OK a participant promises the

coordinator to commit
– But it can only commit when instructed to do so by

the coordinator
– The coordinator could tell it to abort instead

• After sending NOK a participant can abort
unilaterally

• Coordinator can decide to commit only if all
participants have responded OK

• Logging of all messages are required at each site

8

Bottom-up approach to
Building a distributed DBMS

• Data already in various sources
• Build a distributed DBMS to provide global,

uniform access to all data
– How to integrate data?
– How to deal with heterogeneous and autonomous

sources?
» Mediation approach

9

Wrapper/mediator architecture

Database

Wrapper

Mediator Catalog

Client Client

Database

Wrapper

Database

Wrapper

…

…

4

10

Mediator
• Accept queries from clients
• Rewrite and optimize queries
• Send subplans to be executed

by wrappers
• Combine results from

wrappers and perform any additional local processing
necessary

• Mediator catalog stores global schema and external
schema of sources as exported by wrappers

» No source-specific code in a mediator!

Database

Wrapper

Mediator Catalog

Client Client

Database

Wrapper

Database

Wrapper

…

…

11

Wrapper
• Hide heterogeneity away

from mediator
• Translate mediator requests

so that they are understood
by sources
– Example: SELECT * FROM

Books WHERE title LIKE ’%Databases’; → a form-based
search request for books with title matching “*Databases”

• Translate results returned by a source so that they are
compliant with its external schema
– Example: result HTML page → Books tuples

Database

Wrapper

Mediator Catalog

Client Client

Database

Wrapper

Database

Wrapper

…

…

12

Query optimization with wrappers

Basic questions
• Capability: What types of subplans can be

handled by a wrapper?
– How do we enumerate valid plans?

• Cost: What is the cost of executing a subplan by a
wrapper?
– How do we pick the optimal plan?

5

13

Example: Garlic query optimization
• Haas et al., VLDB 1997
• Incorporated in DB2

• Rules for generating valid plans
– Supplied by wrappers and mediator
– Plugged into the optimizer

• Plans have “interesting properties”
– Order (as in Selinger)
– Site (where the output is produced)
– Columns (in the output)
– Predicates (that have been applied)
– Cost, etc.

14

Example rules for a DBMS source
• wrap_access(table, columns, predicates) =

SCANDBMS(table, columns, predicates)
– Condition: table is at my site
– I can handle any projection and selection (by converting them

to a single-table SELECT-FROM-WHERE SQL statement)

• wrap_join(subplan1, subplan2, predicates) =
JOINDBMS(subplan1, subplan2, predicates)

– Condition: subplan1.site = subplan2.site = my site
– I can handle any local join (by converting it to a multi-table

SELECT-FROM-WHERE SQL statement)

15

Example rules for a Web source
• wrap_access(table, columns, predicates) =

FETCHWeb(Books, title LIKE string)
– Condition: table = Books, (title LIKE string) ∈ predicates
– I can search books by title (with wildcards); no projection

• wrap_access(table, columns, predicates) =
FETCHWeb(Books, author = string)

– Condition: table = Books, (author = string) ∈ predicates
– I can search books by exact author names; no projection
– I cannot search books by title and author at the same time

• No wrap_join rule
– I cannot handle process joins

6

16

Example rules for the mediator
• med_pushdown(subplan) = RECEIVE(SEND(subplan))

– Condition: subplan.site ≠ mediator
• med_pushdown(subplan) = subplan

– Condition: subplan.site = mediator

• med_access(table, columns, predicates) =
∀ plan ∈ wrap_access(table, columns, predicates):
FILTERmed(med_pushdown(plan)),

predicates – plan.predicates)
– I can get the result of a single-table scan from a wrapper and

then evaluate remaining selection predicates

17

More rules for the mediator
• med_join(subplan1, subplan2, predicates) =

∀ plan ∈ wrap_join(subplan1, subplan2, predicates):
med_pushdown(plan)

– Condition: subplan1.site = subplan2.site ≠ mediator
– I can push down a join to a wrapper

• med_join(subplan1, subplan2, predicates) =
JOINmed(med_pushdown(subplan1),

med_pushdown(subplan2), predicates)
– I also can handle a join locally

• And more…

18

Plan enumeration
• Call all wrap_access and med_access rules to generate

single-table access plans
• Repeatedly call all wrap_join and med_join rules to

generate multi-table join plans
• Example final plans

– FILTERmed(
RECEIVE(SEND(FETCHWeb(Books, title LIKE string))),
author = string), versus

FILTERmed(
RECEIVE(SEND(FETCHWeb(Books, author = string))),
title LIKE string)

– RECEIVE(SEND(JOINDBMS(R, S))), versus
JOINmed(RECEIVE(SEND(R)), RECEIVE(SEND(S)))

7

19

Costing
• Wrapper-supplied cost model

– Lots of work for wrapper developers
• Calibration

– Define a generic cost model with parameters for all
wrappers

• Example: cost = c · (# of tuples)
– Run test queries to measure the parameters for each

wrapper
• Learning curve

– Use recent statistics to adjust cost estimates
• Example: cost = average over last three runs

20

Summary of wrapper/mediator
Not all sources are created equal!
• What’s in a source?

– Wrapper: source schema ↔ external schema
– Mediator: external schema ↔ global schema

• What can it do?
– Wrappers and mediators supply rules describing their

query processing capabilities
• How much does it cost?

– Wrappers supply cost model, or
– Mediator calibrates or learns the cost model

21

Data warehousing
• Data resides in many distributed, heterogeneous

OLTP (On-Line Transaction Processing) sources
– Sales, inventory, customer, …
– NC branch, NY branch, CA branch, …

• Need to support OLAP (On-Line Analytical
Processing) over an integrated view of the data

» Store the integrated data at a central repository
called the data warehouse

8

22

OLTP versus OLAP
OLTP

• Mostly updates
• Short, simple transactions
• Clerical users
• Goal: ACID, transaction

throughput

OLAP

• Mostly reads
• Long, complex queries
• Analysts, decision makers
• Goal: fast queries

23

Warehousing versus mediation
Warehousing
• Eager “integration”

– In advance: before queries
– Answer could be stale

• Copy data from sources
– Need to maintain

consistency
– Query processing is local

to the warehouse
• Faster
• Can operate when sources

are unavailable

Mediation
• Lazy “integration”

– On demand: at query time
– Answer is more up-to-date

• Leave data at sources
– No need to maintain

consistency
– Sources participate in

query processing

24

Maintaining a data warehouse
Buzz word: the “ETL” process
• Extraction: extract relevant data and/or changes

from sources
• Transformation: transform data to match the

warehouse schema
• Loading: integrate data/changes into the

warehouse

» Can still use a wrapper/mediator architecture

9

25

Warehouse data = materialized views
• If the transformation process can be captured by

SQL, then warehouse data can be seen as a view
– CREATE VIEW warehouse_table AS

SELECT …
FROM source_table1, source_table2, …
WHERE …;

• Except the view is materialized
– That is, the result is stored
– And needs to be maintained when source data changes

26

Maintaining materialized views
Vold = Q(Rold, …)
Change detected: Rnew ← Rold – ∇ R ∪ ∆ R
What is Vnew?
• Recomputation: Vnew ← Q(Rnew, …)

– Done periodically, e.g., every “night”
– What if there is no “night,” e.g., an international organization?
– What if recomputation takes longer than a day?

• Incremental maintenance
– Compute only the changes to V: ∇ V and ∆V
– Apply the changes to Vold: Vnew ← Vold – ∇ V ∪ ∆ V
» Potentially much faster if changes are small

27

Incremental maintenance
Example: V = σp R
• Change: Rnew ← Rold – ∇ R

– Vnew = σp Rnew = σp (Rold – ∇ R) = σp Rold – σp ∇ R
= Vold – ∇ V

• Change: Rnew ← Rold ∪ ∆ R
– Vnew = σp Rnew = σp (Rold ∪ ∆ R) = σp Rold ∪ σp ∆R

= Vold ∪ ∆ V

Change propagation equations

10

28

Change propagation
• More change propagation equations

– (R ∪ ∆ R) �� S =
(R �� S) ∪ (∆R �� S)

– (R – ∇ R) �� S =
(R �� S) – (∇ R �� S)

• Repeatedly apply change propagation equations
to “factor out” changes
– (σpr (R ∪ ∆ R)) ��prs σps S =

(σpr R ∪ σpr ∆R) ��prs σps S =
(σpr R ��prs σps S) ∪ (σpr ∆R ��prs σps S)

29

Self-maintainability
• A warehouse is self-maintainable if it can be

maintained without accessing the sources
• Self-maintainable: V = σp R
• Not self-maintainable: V = R �� S

– ∆R and ∇ R need to be joined with S
– ∆S and ∇ S need to be joined with R
– Problem: need to query the source for maintenance

• What if the source/network is slow?
• What if the source/network is down?
• What if the source has been updated again?

30

Making warehouse self-maintainable
• Add auxiliary views
Example: Order ��O.OID = L.OID AND O.month = ’nov’ AND L.product =

’book’ Lineitem
• Naïve approach: add base tables O and L
• Better approach: push selections down and then add

selection views σmonth = ’nov’ O and σproduct = ’book’ L
• Use constraints

– The join is a foreign-key join (L.OID references O.OID), so
only σmonth = ’nov’ O is needed

– If we only insert matching orders and lineitems together, then
no auxiliary view is needed

11

31

Next time

• Warehouse design
• Data cube
• ROLAP versus MOLAP

